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ABSTRACT

Our research concerns optical data processing for missile guidance and target recognitiol
It uses pattern recognition techniques with an increased use of knowledge base, inference machir
and associative processor techniques. Our Year 3 work concerns new algorithms, real time an
practical realizations of such systems, and new initial work on associative processors, symboli
rule-based processors and directed graph processors (with new attention to unique optic:

realizations of such systems).
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1. INTRODUCTION

The work in the past year of this grant (1 January 1987 - 31 December 1987) and its no-

cost extension (January-March 1988} produced results on various new optical pattern recognition
algorithms, real time laboratory results, new practical computer generated hologram recording
techniques, and four new areas of potential work in optical artificial intelligence (these include

associative processors, symbolic and rule based systems, as well as directed graph optical

processors).

In this last year, the Principal Investigator (Pl) and our AFOSR optical data processing
effort were quite visible within the community. The PI served on the Defense Science Board
Task Force on Image Recognition, gave 2 invited talks in non-optical processing conferences
[1,2], an invited survey paper on optical pattern recognition and artificial intelligence (3], served
on a NASA review committee on photonics, participated in several panel discussions, produced a
book chapter on optical feature extraction [4;, an encyclopedia article [7;, plus numerous papers
and conference presentations. This ends our pattern recogrition AFOSR work. The results we
have obtained should be of use in many future aspects of optical processing for image and scene
analysis. These results are well-documented. due to our conscientious publication effort. These

works have also been published in various non-optical journals to provide wider exposure for this

technology.

We now highlight our research results in this third year of our work. Each result is more
fully detailed in subsequent chapters, as noted. New pattern recognition algorithms and
architectures devised included: new Hough transform techniques for distortion-invariant pattern
recognition [5] were devised and demonstrated (Chapter 2 details these), a large 1000 class
pattern recognition preblem was addressed (6] with attractive initial results (Chapter 3 details

“his work), and a new siriig code processor (8; (detailed in Clapter 4) was advanced. Our
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second thrust area provided real time laboratory results of distortion-invariant pattern
recognition using a liquid crystal television [9] (Chapter 5 details this work) and practical
computer generated hologram (CGH) synthesis techniques using a laser printer were advanced
10 {Chapter 6 details this work). Our third major research area involved optical artificial
in‘ clligence processors. This work provided new results in associative processors, symbolic
proccssors, rule based and directed graph processors. This included: new error correcti~n
associative processor concepts [11] as detailed in Chapter 7, new associative memory mapping
realizations of an optical feature space [12] (Chapter 8), new heteroassociative memory processor
performance measures and recollection vector encoding choices [13] (Chapter 9), symbolic and
rule-based processors [14] as detailed in Chapter 10, and directed graph optical processor
concepts and realizations [15] as detailed in Chapter 11. These last 5 items represent major new
optical processing contributions to knowledge processing. Chapter 12 provides full
documentation of our publications, presentations given, and theses produced related to this
AFOSR effort. The 90 papers and over 100 technical talks presented in the three years of this
program  represent a  quite major and  significant  contribution to  optical

data/information/knowledge processing research and to directions for future research in this

area.
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COMPUTIR VISION, GRAPHICS, AND IMAGE PROCESSING 38, 299- 316 (1Y87)

Hough Space Transformations for Discrimination and
Distortion Estimation

RAGHURAM KRISHNAPURAM AND DAVID CASASENT

Department of Elecirical and Computer Engiecring, Carnegie- Mellon Unarersity,
Pittshurgh, Pennsyvleama 15213

Recetved November 12, 1985: accepted August 1. 1986

A new use of the Hough transform space defined for straight lines is descnbed. The Hough
space i used directly with new eflicient distortion parameter transformanons and template
matching. This technique allows multiclass discrimination. intra-class distortion invariant
recognition, and multiple distortion parameter estimation. A new hierarchical distortion
parameter search method and spatial quantization tn Hough space make realization of this
technique verny attractive. Performance of our algorithm on aireraft imagens and in the
presence of noise is provided 1987 Acadenin Press, i

L. INTRODUCTION

The Hough transform [1. 2). as suggested originally. 1s a method for detecting
straight-line segments in an input image. This concept has been extended to include
other analvtically representable curves such as circles and ellipses [3]. It was further
generalized to include arbitrary shapes and even three-dimensional (3-D) objects
[4. 5]. These extensions are commonly referred to as generalized Hough transforms.
The earlier versions of the generalized Hough transforms [6] required the computa-
tion of the gradient of each edge element and their storage in the form of a table. To
reduce the computational burden. Davis [7] suggested a hierarchical Hough trans-
form in which subpatterns of the image rather than the edge elements (pixels) were
used as the basic units. The implementation of this approach is quite complex since
we must deal with patterns rather than pixels.

Ballard and Sabbah [4] used a similar concept employing line segments rather
than edge elements. They also suggested a different type of generalized Hough
transform for detecting one type of object of arbitrarv shape with scale. rotation.
and translation differences present. They assume that the object boundary can be
approximated by straight-line segments and that a lis of the exact lengths. orienta-
tions and positions of all object boundary segments (with respect to a reference
point on the object) 1s available. 1t is difficult but possible to obtain such a list for
the model of the object being searched for. However, it is computationally burden-
some 1o accurately obtain such a list for an input image. especially when noise is
present. Implementing this efficiently will probably require a special symbolic
language to handle the lists, especially when the lists are complicated. Detecting
peaks in the Hough domain is difficult, especially when bias and noise are present
(8] Tt 1s difficult to quantify how well any such method will work when extraction of
line segments in the input image is not easily achieved. The performance of such
methods in the presence of noise is also not easily analyzed. All of these methods
presuppose that the type of object being searched for 1s known in advance, i.e.. they
are only applicable to one-class problems and do not easily provide discrimination
against other object types.
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0.y

{a} (h)

F16 1 Tage plane to Hough transform plaae mapping (a) Pomts 4 and B in the imaae plane are
mapped to (b) curves 4 and & in the Hough transform plane. The fine in <) maps to the pomnt op” 67
in by

The basic Hough transform for straight hines can be readily implemented digitalis
if the conventional parameterization in terms of the normal distance p and angle 6
for straight lines is used. Figure 1 shows this classic image plane f(x. 1) to Hough
transform plane H(6. p) mapping for a hine. Each point (x. v)yin f(x. v) is mapped
to a sinusoidal curve in H(8. p) given by

xcost + ysing = p. (1)

This sinusoidal curve gives the p and § parameters of all the straight lines passing
through the point (x. v). Each point on the straight-line maps o a difterent
sinusoidal curve (e.g.. 4 and B in Fig. 1b) given by Eq. (1) All these curves
intersect at a point in the Hough space and this pomnt detines the p and #
parameters for the straight line shown in Fig. la.

The calculation of this Hough transform requires only simple muttiplications
involving trigonometric functions. Since the same multiplications are performed for
every edge pixel in the image. computation of the Hough transform can be achieved
in parallel. The results are accumulated in the H(6. p) Hough arrav. Tt has also
been shown [9] that the Hough transform is a special case of the Radon transform
and that it can also easilv be computed using optical techniques at video rates
{10, 11]. This transform and H(#. p) i~ thus very attructive for the low-level
representation of images of objects.

This paper describes an alternative approach to estimation of the scale rotation.
and translation of an input image with respect to a reference image. It uscs the basic
straight-line Hough transform space. The proposed method is unique because it is
capable of handling multiclass problems. Qur approach is also original because the
matching is performed directly in the Hough space. This differs significantls from
the other approaches in which Hough techniques (i.c.. accumulating votes in a 2-D
or 3-D parameter array) are used for matching tables. In Section 2. we review the
ease with which one can obtain the Hough transform of the input image. Section 2
also discusses the various applications and realizations of the Hough technique and
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the advantages and disadvantages of cach. In Scction 3 we detatl our use of the
Hough space for distortion invariance. This involves new transformations applied o
the Hough space. The case with which the transformations can be achieved is
discussed. A hierarchical matching technique is detailed 1 Section 4 that signi-
cantly reduces the computations required to determine the object class and the
object orientation. The image database used and the results obtained are then
advanced (Sect. 3) and noise performance is also provided. Finallv. Section 6
summarizes our work and advances our conclusions.

2 THE HOUGH DOMAIN AS A 2D 'FATURE SPACT

The algorithms suggested thus far o estimate the scale, rotation. and transiation
parameters of an mput image using the Hough technique require the compifation of
some form of a List or table. This list can be precomputed. as i [4]. or dvoamically
computed, as in [3]. The R-table [6] requires the storage of a list of the gradients of
all edge elements and their positions with respect 1o a reference point for the object
to be searched for. For an unknown input image. the location of the reference point
must be determined To achieve this an accumulator or Hough array is created with
cach element denoting a possible location of the reference point in the input image.
The list from the model is used to compute the possible 1ocations of the reference
pomnt with respect to cach edge element in the input image. where cach possible
location corresponds to a particular translation and rotation of the object. Thus.
each edge element in the input image votes for all possible focations of the reference
point and these votes are gecimulated in the Hough arrav. When the voting process
has been completed for all edge clements. the peaks in the arrav indicate the
possible Tocations of the reference point in the input 1image and thus denote the
object’s possible location. A similar approach using line segments rather than edge
clements has been suggested (4]

In both cases, if the scale. rotation and trasslation parameters of the object are 10
be estimated simultareousiy. o 4-D Hough arrav iy needed. In this arrav, o
dimensions denote the two translation parameters and the remaining two dimen-
stons denote rotation and scale. This signiticantly increases the computational
complexity and the memory requirements. Peak detection can be very difficult in
such a 4-D arrav {8] since we must deal with hvper-surfaces. To overcome some of
these problems, a two-level approach has been recommended in 4], in which the
scale and orientation are estimated first (using a 2-D Hough arrav) and then
translation is estimated (in a second-level 2-I> Hough arrav). The digital implemen-
tatton of these methods is straightforward and can be realized in parailel {12}, given
sutficient hardware and once the list has been obtained from the mode) and the hne
segment information has been extracted from the input image. (Accurate caleulation
of the line segment data from the input image can be very difficult)

To reduce the memor requirements and computational burden. another ap-
proach has been suggested by Li. Levin. and LeMaster [13]. Here the voting process
is carried out only in those parts of the Hough array where peaks are likely to oceur.
This method. however. applies only to situations in which an element in the input
image votes on a hvperplane (and not on the more general hvpersurface) in the
parameter (Hough) space. Tt 15 also not known how well the method will perform
when the peaks are ditfused.
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Several problems associated with these prior methods are worth noting. A
Ballard and Sabbah point out [4). the position information is ignored while
estimating the scale and orientation in the first level. As a result. peaks can oceur in
the accumulator array due to line segments in the input image that do not even
touch each other and due 1o line segments that do not even lie near each other. Thus
many false peaks can and do arise in the accumulator arrayv. Another potential
problem [8} with these methods is the detection of the peaks in the Hough array.
Because of the inherent noise and bias present in the Hough transform. sharp peaks
rarely occur, rather all peaks are distorted and ditfused (smeared). Thus. we require
the detection of local peaks rather than global peaks. and hence, sophisticated peak
threshold methods. This problem becomes much worse when the dimensionality of
the Hough array is large. since we must then deal with hypersurfaces. Another
major problem with these prior methods is that they require the detection of the
gradients and the positions of the edge elements in the input image. prior to the
application of the Hough technique. If line segments are used. their orientations and
positions are required. This image preprocessing often requires special edge-follow-
ing and line-fitting algorithms which can be inaccurate and tedious. The final and
quite a major problem with all of these methods is that they are object-specific and
must thus be reformulated if a new object 1s to be searched for.

In this paper. we describe a different usage of the Hough transform to overcome
these problems. In what follows, 1t should be understood that by Hough transform
(HT). we mean the basic Hough transform defined for straight lines.

A simple and fast method of computing the lengths and orientations of the line
segments in the mput image is to use the Hough transform iself. The peaks in the
Hough transform give the strengths and orientations of all lines in the input image.
However. it suffers from the same problem as do the earlier methods since peak
detection can again be difticult. Therefore, our new suggestion is not 10 extract any
information from the Hough transform. but to simiplyv use the Hough space as it i

The basic idea of our approach is to approximate an object by a set of line
segments and to describe these segments by a given 2-D pattern in the Hough
domain. Thus. two similar objects would have similar Hough transtorms and two
different objects would have different Hough transforms. If the object is scaled.
rotated, or translated. the Hough transform will change and distort. However. as we
detail in Section 3. 1t is possible to define new transformations in the Hough domain
that can remove these distortions and reconstruct the Hough transform of the
original object in the reference orientation. When this is done, a simple template
matching with the Hough transforms of different reference objects determines if the
input object is a distorted version of a given object. It also determines the class of
the object and its distortion parameters. This method can thus be used to dis-
criminate between different types of objects (from the similarity of the template
matches of their respective Hough transforms). )

Eight distinct advantages of this approach are now noted. (1) It does not require
extracting orientation and position information of edge clements or the lecgths and
orientations of line segments in the input image. (2) We do not need to detect the
peaks in the Hough domain, The inherent Hough bias will reduce our discrimina-
tion capability, but it is not a serious problem unlessy the two objects are very
similar. (3) This technique uses only a 2-ID Hough space and thus there 18 no
concern with hypersurfaces. As a result. (4) real-time computation is possihle, and
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F16. 2. Position vector Pounit vector a08) and projecnion poas defined by Egs (23 and (%)

(5) memory requirements are small. Memory requirements can be further reduced
by coarsely discretizing the parameters of the Hough space. Because we use the
Hough space itself, considerable quantization is allowed. (6) By using multiple
Hough space reference patterns. this method can be used for muhti-class problems.
(7) The use of this Hough space as a 2-D pattern in a correlator is attractive and
allows shift invariance. (8) Last. this approach can be casilv extended to the
recognition of 3-D range images and to the detection of 3-D orientation and
translation. This can be achieved without increasing the dimensionality of the
Hough space (as we will detail in a future publication).

3 HOUGH SPACE DISTORTION TRANSFORMATIONS

In this section, we present a vector description of the Hough transtorm for
distorted objects. Our Hough space distortion transforms then directly follow.

3.1. Vector Description

In this approach, each point (x. y) in the image 1s represented by a position
vector P = xi + vj from the origin as shown in Fig. 2. Here i and j are unit vectors
along the x and y directions. respectivelv. The point P shown can lie on mam
{theoretically an infinite number of) lines that pass through it. Each of these straight
tines can be characterized by a unit vector a(6) and a magnitude p. The unit vector
a( @) extends from the origin perpendicular to the line and at an angle € with respect
to the positive x axis and p 1s the shortest projection distance from the origin to the
line. The unit vector is described by

a(@) = (cos )i + (sinf}j (2)

and the projection is defined by
P-a(8)=p. (3)
By varying 8 and performing the required vector inner products in (2). we can ecasily

generate the a(f#) vectors and the corresponding p values for all possible straight
lines passing through a particular point P,
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We consider only a finite number of § values between 0 and 2« Thus, the
process described above generates a finite list of (6. p) pairs that charactenize the
corresponding straight lines passing through P. The point P is said to ™ vote™ for all
of those (8. p) pairs in the Hough space. To represent the Hough space as a finite
2-D array, we discretize the values of p also. When the votes for all (8. p) pairs
have been accumulated for all points or edge elements in the input image, then the
result 1s the discrete Hough transform of the input image. We assume that p is
positive. If P < a(8) < 0. we ignore the corresponding (8. p) vote. since this implies
P+ a(f + #) > 0 and that the associated vote would be counted at (6 + =, p). If
p = 0. this corresponds to a line through the origin and for this case. (4. p) and
(8 + =, p) represent the same straight line. Thus. we need consider 8 values onlv
between 0 and = for the top p = U row in our plots and computations.

3.2, Hough Trunsform of a Scaled Image

Let 7.(x. v) be a scaled version of f(x. v) with scale factor 5. such that a point P
at (x. ») maps to a point P, at (x/s. y/5). Since P < a(f) = p/s. the votes that
occurred at (6. p) in the original Hough transform now occur at (6. p/s) for this
scaled object. Thus, the Hough transform is compressed or expanded along the p
axis only, depending on whether s > 1 or s < 1. The Hough transform H (8. p) of
the scaled image 7 (x. v) is thus related to the Hough transform H(8. p) of the
original image by

H(8.p/s) = H(8. p). (4)

The above equation can thus be used to reconstruct f(4. p) from H (6. p) as we
detail later.

3.3, Hough Transform of a Rotated [mage

Let /,{x. ») be the original image rotated in the image plane by an angle &. In
Fig. 3. we show one point P on the original object and the associated point P, on the
rotated object. In polar coordinates, P lies at (r,¢) and P lies at (r. ¢ + ¢). Since

P, =(r ¥4+é)

F1G. 3. A point Pon the object. and its position (P, ) when the object i rotated about the ongin by an
angle ¢
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P, =P+T
y
T=ai+bj
P
al8)
>

T16. 4. A point P on the object. and 1ts postion P, when the object is translated by T

P-a(f)=p=P,-af+ ¢). it follows that the votes at (8. p) in the original
H(@. p) now occur at (§ + ¢. p) in the Hough transform #,(8. p) of / (x. v). The
new and original transforms are thus related by

H.(6+¢.p)=H(b.p). (5)

To obtain the original Hough transform from H (6. p) of the rotated image. we
need merely shift the Hough array horizontally by an amount equal to the rotation
¢. This shift is a circular shift since the points (8. p) and (8 + 27, p) are equivalent
in the Hough domain.

3.4. Hough Transform of a Translated Image

Let 7,(x.y) be the image obtained by translating the object by (a, b) and let
H,(6. p) be its Hough transform. A point P in the original image will now lie at
P, = P + T. where the translation vector T = ai + bj is shown in Fig. 4. We let the
projection magnitude be P » a(8) = p for a line corresponding to an angle 8. Then.
the projection magnitude for the translated point is computed as

Pea(f)y=(P+T)-a(f)=P-a(f) +T-a()
=p + (ai + bj) +(cos @i + sin 8j)
=p+acosf + bsing =p+ 1cos(6 — a). (6a)

where

1= (a?+ b))% a = tan '(b/u). (6b)

The second half of Eq. 6a follows from a trigonometric identity. We hereafter
describe translations by the parameters r and a. To evaluate and interpret (6), we
consider two cases separately.

Case l. p +1cos(f ~ a) > 0.

In this case. if the point P voted for a point (8. p) in the Hough domain. the same
vote would occur at (8. p + tcos(@ — a)) in H,(6. p). Therefore, the elements of
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the column corresponding to @ in the original Hough array are shifted along the
positive p axis by an amount equal to 7 cos(8 — a).

Case 2. p+ tcos(8 —a)<O.

In this case the vote does not occur at (8, p + rcos(d — a)) since p +
tcos(# — a) < 0. (Recall that in the Hough space, p > 0.) However, this implies
that —P,»a(fd)=P,ca(f +7)= —(p + tcos(d — a)) > 0 and therefore the vote
would be entered at (8 + 7. —p — tcos(§ — «)) in the new Hough space.

Combining thes¢ two cases. we can obtain H(6. p) from H,(8, p) as

H8.p+ tcos(8 — a)) if p+tcos(f—a)=0
H(8.p) = f

| H(6 + 7. —p — tcos(8 — a)) if p+rcos(d - a) <0. )

These results show that a translation of the object causes shifts in the Hough
transform in the vertical ( p) direction only. The amount of the shift is a function of
8 for each object point. i.e.. it varies along the horizontal # axis in the Hough space.
For each column with a positive shift, there is a corresponding column a circular
distance 7 away in @ that requires an equal negative shift. This occurs because
tcos(@ — a + ) = —tcos(8 — a). Thus half of the columns in H,(6, p) will have
positive shifts and half of them will have corresponding negative shifts when we
produce H(8, p) from H (8. p). Those elements that are shifted out of the Hough
space as a result of the negauve shifts reenter the Hough space a circular distance 7
away, we explained in Case 2.

3.5. Combined Scale., Rotation, and Translation Transformation

Equations (4). (5). and (7) can be combined to yield

p + 1cos(6 — a) )
IH’(0+¢.~———) if p+rcos(f—a)=20
5
H 0. = !
(6.p) \ —p —1cos(f — a) ) (8)
lH' 0+¢+7.———S——————) if p+rcos(d - a)<0.

This relates H'(8. p) for a general distortion to H(#8. p). In Eq. (8). it is understood
that the additions to 8 are performed modulo 2.

3.6. Digital Implementation of Distortion Transformations

A digital implementation of the distortion transformations is particularly simple.
Assume that H'(6, p) is stored as a 2-D array and that the translation of the object
is known. To undo the distortion in H'(8, p) caused by translation. we need merely
shift the columns corresponding to different 8 by an amount rcos(8 — a). Since ¢
and a are known, the amount of shift for each # can be precomputed. If we feed
each element in the top row of the new H’'(8. p) to the element in the same row a
distance 8 = = away horizontally, then as the elements of H’(8. p) are shifted out
from the top row in one column, they enter the proper column a distance 8 = «
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away, causing downward shifts in these columns. This follows from the earlier
discussion of Eq. (7). This is easily achieved by up/down shift register type
memories.

Having corrected the effects of transiation as above. the H*(8. p) distortion
effects due to rotation ¢ are similarly corrected by circularly shifting the rows of
H’(8. p) by ¢ in the @ direction.

To produce H(0. p) from H (8§, p) for a scaled input and a given y, we consider
two cases (depending on whether s > 1 or s < 1). We assume that p and s or 1 /s
are integers. (The implementation is a little more involved if s is not an integer and
will not be discussed in this paper).

Case 1. s > 1 (compressed image).

Assume that s is an integer. H (8, p/s) is defined only for those values of p for
which p/s is an integer. Thus. using (4) we produce H(8. p) from H (6. p) for p
such that p/s is an integer. The remaining rows in H(#. p) are assigned zero
values. Thus. we produce H(8. p) from H (6. p) by (4) for rows p where p/s is an
integer and by inserting zero-valued rows in the appropriate rows p of the array
where p/s is not an integer. This operation is also easily achieved in advanced
Memory arrays.

Case 2. s < 1 (expanded image).

Here we replace s by 1/s (an integer). From (4). for the case of a scale change. we
require H (8.sp) = H(f8.p) and H(0.s(p + 1)) = H(f. p + 1) for all p. Con-
sider row r in H (6. p)such that sp < r < s(p + 1). Since r is not exactly divisible
by s. no row in H(6, p) exactly corresponds to this row in H (6. p). Therefore. we
add the votes for this row to the nearest discretized value of r/s (either p or p + 1).
Thus, to obtain H(#f. p) from H (6. p) for a given s. we need merely shift the data
in all rows r in H (8. p) (for which r/s is not an integer) and add these data to the
data in the closest rows that are divisible by s. These scale distortion transformation
can also be easily implemented using shift and add memory techniques.

4. HIERARCHICAL MATCHING

In the previous section, we described a method of efficiently producing the Hough
transform of the image for a given scale. rotation. and translation. The method
assumes that the scale, rotation and translation parameters are known. In practice.
we are given a reference image and are required to estimate these parameters for an
input image. In this section, we address simple techniques to estimate these
parameters.

4.1. Brute Force Method

One method uses brute force. In this method, we consider all probable combina-
tions of these distortion parameters and for each of these allcwable combinations,
we construct the associated Hough transform from the observed Hough transform
of the input image. The combination of distortion parameters that give an H(4. p)
that best matches that of the reference(s) yields the distortion estimates and the
object class estimate. If the number of possible combinations of distortion parame-
ters is large, the brute force method will be slow and inefficient.
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4.2. Reduced Distortion Parameter Search

We thus consider methods and cases when the number of possible distortion
parameter combinations can be reduced. This is very application-specific of course.
If the target range data (or a range image) is available, the value of scale can be
estimated quite accurately. If the application concerns top—down views of objects
such as aircraft, then the orientation and location in H(8. p) of the two parallel
lines that define the fuselage of the aircraft provide a good estimate of the object’s
rotation. Additional object distortion information is easily obtained from simple
operations on the image. For example, the translational location of the object can be
determined from the projections of the image along the x and 1 axes or from the
first order moments m, and ni,,.

4.3, Hierarchical Search and Classification Method

We now detail a simple three-level hierarchical matching-search procedure that
we have found to work well when the scale of the object is known and when the
object is approximately centered (using moments or projections). Figure 5 shows
this method in block diagram form. We describe this processor with the distortion
transforms (Sect. 3) applied to the reference patterns. In the first level. the
translation is ignored and the Hough transform of the input object is matched with
all allowed rotated versions of the Hough transform of each reference object. This
search is performed for rotations ¢ quantized in A¢ intervals to the degree desired
and required for the given object classes and application. This can be easily
achieved by feeding the Hough transforms of the input and reference images to a
1-D correlator as shown in Fig. 5. This is because a rotation of the object gives rise
to a corresponding 1-D shift along the ¢ axis in the Hough domain (Sect. 3.3). The
rotation angle ¢, corresponding to the best match and its two nearest neighbors ¢.
and ¢, are retained as the three most probable ¢ values. From the centering
accuracy possible, the maximum value of ¢, 1,,. i1s known. In the second level. a
value for ¢ is assumed. (We use .,./2). We must still search the distortion
transforms of the reference objects(s) for all expected a values for each of the three

madel
HT

I L I 1Y a;~ay
1D ) 3 P 4ot
nput Distoruon P'rojections ! Distortion rojections | .
HT n;rr:rl:::;n ! Transform a search Transform t search
a—ad '
N
N ’ \ - — ’ S R, .
———————— \v,—-—_\__, R Ve ——— —_——— ~” - -
fevel-1 level2 level-3
select three &'s select one @ and three a's select one a and ¢

Fi1G. 5. Block diagram of the HT hierarchical scarch and classification method
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¢ estimates obtained from the previous level. This can be easily achieved by
applying only the « distortion transforms to the Hough transforms of the reference
objects (Sect. 3.6). A different a value results in a new HT that is not simply a 1-D
shifted version of the original HT. Thus, this matching in the Hough space can be
done by multiplying the corresponding elements of the Hough transforms and
adding the products. This amounts to evaluating the correlation value at the center
point. In Fig. 5, these correlations evaluated at one point are referred 0 as
projections. The Aa quantization used is determined by the object clusses involved
and the accuracy required in the given application. The ¢ value and three a values
corresponding to the best match («) and its two nearest neighbors ¢ . and a.) are
passed to level 3. In level 3. we search ¢ from 0 to ¢, for the three a values and the
one best ¢ value determined from level 2. The HT for a new ¢ value 1s again a new
HT and this search in Ar increments is performed as the « search in level 2 was.
The number of ¢ values and the range of 1 to be searched are set by the expected
accuracy of the centering method used. The best match vields the final 7. a. ¢. and
object class estimates. This concept can be extended to include a scale search as
well, with an associated increase in complexity. Section 5 detatls and quantties this
hierarchical procedure for different aircraft image classification problems with
attention to the quantizations A¢ and A« and the number of searches needed.

5. DATABASE AND INITIAL TEST RESULTS

5.1. Database

The images used in our initial experiments were top-down edge (boundary)
images of five different types of aircraft with a resolution of 128 X 128 pixels.
Figure 6 shows the ¢ = 0 edge images of the five aircraft tvpes used. Using
specialized software and aircraft model descriptions. various translated versions of
each image with 7 varied from 0 to 60 pixels within a 256 x 256 pixel image frame
were used together with different rotated and scaled versions of each image with the
scale s = 1. 2. and 3. For test inputs, 1 was varied continuously from 0 to 60.
whereas our ¢ quantization used in the system was 10 pixels. Thus our 1 estimates
are expected to be accurate only to +5 pixels. The « translation parameters used
ranged from 0 to 315° and were quantized to Aa = 45°. The rotation parameters ¢

F16. 6. Edge images of the aircraft tvpes used. (a) DCL0, (b) BS7. (¢) F105, (d) Mirage. (¢) Mig

————
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used varied from 0° to 330° in increments A¢ = 30°. Thus. there are 12 values of ¢.
3 values of s. 6 nonzero values of 7, and 8 values of « for cach nonzero value of 1.
This makes a total of (1 + 6 X 8)12 X 3 = 1764 possible combinations of the
distortion parameters.

The H(8, p) transform space was computed as in (1) with A8 = 5°, Ap = 5 and
the origin in the center of the 256 X 256 image frame. The Hough array (8. p) is
thus of size 360,/5 x 128 /5 or 72 x 26. Byte arrays were used to store H(8.p) 10
256 levels from 0 to 255. The largest pixel value in all H(6. p) arrays was
normalized to 255 and values below a threshold were simply set to zero to reduce
the computations in the matching process. A threshold of 40 was used for noise-free
images. The hierarchical search test results involving scale changes have not been
included in this paper. However, our experiments indicate that in order to achieve
good results with scaled images. we need to compute the Hough transform with
slightly better resolution. A8 = 2° and Ap = 2.

5.2. Representative H(8, p) Examples

In Fig. 7a we show H(#8. p) for a Mirage oriented at ¢ = 0 and centered at the
origin and in Fig. 7b we show H(#8. p) for the Mirage shifted upwards by 60 pixels.
We discuss Figs. 7a and b to provide insight on the contents and pattern in the
Hough transform. The peaks in each H(f. p) can be associated with the varicus
lines in the image. In Fig. 7a. the bright peaks at approximately ¢ = 270° + 30°
correspond to the two lines thaut define the front cdge of the wings. the peaks near
8 = 90° correspond to the back edges of the wings and the edges of the tail. The two
parallel vertical lines that define the fuselage produce peaks at p = 0 and 6 = 0 and
180°. (Recall that p was discretized to intezer multiples of 5.) In the Hough
transform in Fig. 7b of the Mirage translated vertically upward by 60 pixels.
the columns of the Hough array are shifted up or down bv rcos(§ — a) =
60 cos(f — 90°) = 60sinf. as in Eq. (6). The shifts from § = 0 to 180° are positive
downward with the maximum shift occurring at # = 90°. The shifts for 8 between =

0
- >

{a) 40—

0_t

Fic. 7. The Hough transform of the Mirage (a) centered at the origin. (b) shifted upwards by 60
pixels, and (c) corresponding to the best match. For this test, ¢, = 2.38 % 10°, ¢, = 1.51 » 10", and
C, = 1.04 x 10°.
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F1G. & The Hough transform of the centered Mirage (a) unrotated. (b) rotated by 1207 and
(¢) corresponding to the best match. For this test, Cy = 238 x 107 ¢y = 202 < W and L= 162 -
10"

and 2w are negative and the original data there merges in the top portion of the
array and enters 180° away between 6 = 0 and #. As seen. this causes the peaks due
to the front edges of the wings to now occur at 90° + 30° (at smaller p values)
instead of at smaller p values at 270° + 30° as in Fig. 7a.

To determine the distortion of this one known class of input test object from Fig.
7b. we could produce H(#. p) for all 1764 possible sets of the distortion parameters
{s. 1. o, and ¢) applied to the Hough space. For each case, the new H'(8. p) could
be template matched against the H(8. p) reference in Fig. 7a. The distortion
parameters associated with the largest correlation value obtained are selected as the
best estimate. Figure 7¢ shows H'(8 p) for the best match. As can be scen. it is
visually very similar to the oniginal H(6. p) in Fig. 7a. The correlation value
C, = 1.51 X 10° for the correct (1. a.¢) = (60.90°.0) choice was the largest one
obtained. The next largest value C, = 1.04 x 10 occurred for (1. a. ¢) = (50.90°.0y.
The maximum C,; value compares favorably with the autocorrelation C, = 2.38 X
10%0of the original H(#, p). Thus. local maxima can be avoided and high confidence
in the final estimate can be obtained by ensuring that €, is some high fraction of C,
(typically = 0.6 C,).

Figure 8 shows similar one-class test results for the Mirage with ¢ = 0° (Fig. 8a)
and ¢ = 120° (Fig. 8b) rotation only. The £'(6. p) pattern with the best match is
shown in Fig. 8¢ with its C; value and the associated (7. a. ¢) parameters. The ¢,
value for the next best match is listed for completeness. Again. the correct object
distortion estimates are obtained. The variations in the | values arise due to the
quantization of the Hough space. Visual inspection of Figs. 8a and b shows that
they are the same with Fig. 8b being a cyclically shifted version of Fig. 8a (with a
cyclic shift of 120° or 120° /360° = ! of the H(4. p) pattern. As can be seen. Fig.
8c is almost identical to Fig. 8a.

5.3, Multiple-Distortion Intra-Class Recognition Tests

This H(8. p) transformation and template matching technique was then applied
to multi-class multiple-distorted versions of the five aircraft types. Columns 1-4 in
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TABLE |
Selected Intra-Class Multiple Distortion Test Results
Best estimates from Best esumates from
full search hierarchical search
A = 30° Ar = 10, da = 439 36 = W0 Ar = 10, da = 43¢
Test Aircraft  Translation Rotation Translation Rotation Translation Rotation

no name a. b (pixels) ¢ (degrees) a. b (pixels) ¢ (degrees) a. b (pixels) ¢ (degrees)

1 Mirage 0.60 0 .60 0 0. 60 0
2 Mirage - 30,30 4] S28 2 0 2K, - 2K 30
3 Mirage 14,14 120 14,14 120 14.14 120
4 DC10 7.7 270 7.7 270 7.7 270
N DC10 25,28 270 28, 2K 270 4. 14 1S0*
6 DC10 3. 38 270 35,38 270 35, 3s 150*
7 BS7 5. 3 320 7 330 707 330
% BS7 17.17 320 2121 330 2100 330
9 BS7 58,5 20 6, 0 330 50,0 Rifhd
10 Mg LA 223 A 21 T 210
11 Mig 4. 14 225 14, 14 210 14, 14 210
12 Mig 43,41 228 42,92 210 21.21 270
13 F108 9.9 30 4,14 RRIN 14,14 130
14 Fl05 20, - 20 330 2L 2 130 14,14 210*
IS Flos 60, 8 3w 6,0 kRN 60,0 UK

*Large ¢ (1 = 25

Table 1 describe the input test data. Data for three representative distorted versions
of each aircraft type are included. These initial one class (intra-class) results assume
that the object class was known and thus only represent tests of distortion
parameter (s. ¢, u. b)Y estimates. The results for both a full (brute force) search and
ou: hierarchical search are included. The full search method results (columns 5 and
6 of Table 1) always vield the correct estimates within the quantizations 3¢ = 307,
Ar =10, and Aa = 45° of our distortion parameters. The estimates for translation
are given in terms of the « and b parameters which can be easilv obtained from the
t and « parameters.

The results using our hierarchical search method are now discussed. Note that the
test inputs are only approximately centered in these tests. The intra-class test results
on the same 15 test images using our hierarchical search method are presented in
columns 7 and 9 of Table 1. The scale s is assumed to be known. In the first level.
12 tests of ¢ are made (A¢p = 30°) assuming that the translation is zero (i,
a = b = ) and the three best values are passed to the second level. In the second
level, & values of a are tested for the three best & values from level 1 (e
& X 3 = 24 tests are performed). These level 2 tests are performed for a tixed
1= (a’ + h7)' 7 = 20. Since the object is assumed to be approximately centered.
£ = 20 1s a reasonable estimate for translation. The three best a values and the best
¢ value are then passed to level 3. where six 7 tests for each a are made (3 x 6 = 18
tests). The total number of test matchings required is thus 12 + 24 4+ 18 or only 54,
This is a significant reduction from the 1764 tests required in the brute force
method. As can be seen from the results. this method gave comparable results,

o
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except for large ¢ (1 > 25) denoted by * in Table 1. This is expected because the
simple method (assuming ¢ = 0) used to estimate the ¢ value in the first level fatled.
By centering the object in advance or by including several 1 values in level 1. near
perfect performance can be obtained.

5.4. Discrimination and Multiple-Distortion Performance

Table 2 shows test results of the discrimination and recognition performance of
our hierarchical method in a multi-class case. Columns 2 4 list the selected input
test image information. The tests included four of the input aircraft tvpes with
different multiple translation (a. b) and rotation {¢) distortions present and one
(test 5) with only a shift. The best template match for each test input with two to
four of the reference aircraft types is given (columns 5-8). In tests 1-3, we see that
both the correct aircraft class and the correct distortion parameters are obtained.
Such an excellent performance is expected when ¢ < 25, Thus the multi-class
discrimination and intra-class recognition (multiple distortion invariance) features
of this processor have been demonstrated. From Fig. 6. we see that the F105 and
Mig images are rather similar. We thus expect discrimination between these two
aircraft types to be difficult. In test 4. we find that the Mig input would be
misclassified as an F105. Using a Hough arrav with higher spatal resolution could
resolve these two similar classes. If we use the fact that C, = 0.83 x 10% occurs for
the Mig and that a larger C, = 1.56 x 10° occurs for the F103. we can normalize
the data or set | = 0.6 x €, and realize that the observed | is w0 large and thus

TABLE 2

Mului-Class Multiple Distortion Recognition and Performance of Hierarchical Hough Transform
Transformations and Matching

Hierarchical processor results

Best estimates

Input test atreraft information A = 30°, A1 = 10, Ja = 45

Test Aircraft  Translation Rotation Reference Correlation

no. tvpe a. b (pixels) ¢ (degrees) aireraft a. b & value

1 DC10 7.7 270 DC10 7.7 270 177« 10°
F105 7.7 2740 1.27 ~ 10°
B57 20,0 240 1.03 x 10°
Mirage 0.0 270 161 x 10°

2 Bs7 7. 17 30 B57 -70=7 30 1.3 x 10°
DC10 -14, 14 0 1.14 x 10°
F105 i4, 14, 60 100 x 10°

3 F105 -1.7 130 F105 -7 130 1.45 x 10°
DC10 0.10 0 1.30 x 10°
BS7 1.7 130 111 x 10°
Mig -10,0 330 1.00 x 10°

4 Mig -14, - 14 150 F105 =21, -2 150+ 1.05 x 10°
Mig - 14, 14 150 0.79 x 10°

5  Mirage 0,60 0 Mirage 0.60 0 1.51 x 10°
DC10 0.60 0 1.16 x 10°

* Misclassitied.
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a b c

Fii. 9. Image of the Mirage with noise with (a) o, = 0.2.(by 0, = 025 und (v} g, = (1.3

provide discrimination of such similar object classes. From Fig. 6. we also note that
the Mirage and DC10 are similar in shape as well as in size. Test S was included to
show that our Hough transform hierarchical technique still allows us o discriminate
between them. All the test results were the same when the brute force method was
used. e identical values for the best € and €, values were obtained.

3.5 Nowse Performance

To determine and quantify the performance of these methods in the presence of
notse, nowsy inpot images were generated as follows, Random noise with a Gaussian
distribution and of zero mean and different variance o, was added to each pixel in
the test image. The resulting image was then rebinarized by thresholding it at 0.5,

: Figure 9 shows the image of the Mirage when noise with o, = 0.2, a, = 0.25 and
} o, = 0.3 was added. Table 2 shows the performance of our full search and hierarchi-
l cal methods for intra-class muluple distortion estimation with a noise varincee

o, = 0.2. As seen. all results are perfect in the case of the brute force method (within
our quantizauon). The results in the case of the hierarchical method are correct
except in the case of test 3. When a, was increased to 0.3 the brute force method
still gave the same results. but the hierarchical method was in error in 30 30% of the
cases with the ¢ estimate n level 1 generally being the estimaton parameter in
error,

1 TABLLE 3
Sclected Intrg- Class Muttuple Dictortion Test Resufts When Nosewith o, - 002 Was Added
Best estimates from Best estimates from

full ~carch hierarchical search
Aé = WAy = 0 da = 38 AV-RER LA CAEE (LR VR N

Test Awrcraflt Transtation Rotanon Transation Rotation Translation Rotation
no name a.bpixelsy @ degrees) gL bopiwds o (degrees a.hpinels) & tdegrees)
1 Mirage 0,60 0 (60 0 0. 60 0

2 Mirage 14.14 120 14,14 [0 200 e

k) DO 2.7 270 *7 2T0 T 270

4 BS? s, S 320 B 130 R 3

S RBs? 17.17 120 212 3 212 ARl

6 Mig K K 225 N7 200 T 210

7 Mig 14, 14 228 4. 14 2t 4, 14 N

H % F1os 9.9 330 14.14 RRTH) 14,14 13y
9 F10S 60,8 130 6060 LRIl 00 N

* Wrong parameter estimates




S

HOUGH SPACE TRANSFORMATIONS FOR DISCRIMINATION

ot
wn

TABLL 4

Multi-class Multiple Distortion Recognition and Performance of Hierarchical Hough Transform
Transformations and Matching When Notse with a, - 0.25 Was Added

Hicrarchical processer results

Best estimates

Input test wreraftinformation R R S A (U R
Test Asreraft Translation Rotation Reference Corrciation
no tpe a.hipiwely @ odegrecs) areraft @b = value
1 DO o 270 DO o 270 131 - 1
[REIN T 27 1oy - 10
B 1IN0 270 NI
Mirage o Y] 14 - 14
2 RB37 T 0 RBs7 7 Y} 133 -
Do 16 30 129 . 10
(BN 0N 120 Loe - 10
3 Flos T Tk Flus R i 151 » 0"
noem O, 10 RRTA L IV S FTN
B3 A AR 126 - 0
Mg [0 RRIT] fout . fof
4 Mig 4. 14 150 Flos M| 150 139 - 10f
7 Mig 1+ 14 150 TR CE TN
3 Mirage o, 60 0 Mirage 0,60 0 13- 300
) DCLo 0, ) " 109« 10

*“Minclassihed

When discrimmation performance with multiple distortions for g, = 0.2 was
tested the results obtained were essentially the same as those for the noise-free cases
in Table 2. However, when o, was increased to 0.25 (Table 4). the method is found
to make an additional error. with the F105 beirg wrongly classified as a DCT0 (test
3. Table 4). A threshold of 80 in the Hough space was sised for these noise tests.

The signal to noise ratio (SNR) in these tests can be computed us

b

+ N,

SNR = (9

AY

nl

where A, is the number of boundary pixels on the noise-free target. N, 1S the
number of background pixels added and V. s the number of target pixeis
removed. For g, = 0.2(0.25) and the Mirage aircraft. SNR = 1.1710.316). Thus, our

ohserved performance is excellent in the case of poor input SNR.

6 SUMMARY AND CONCLUSIONY

A new approach using the basic Hough transform defined for straight lines has
been suggested for estimating the scale. translation and rotation distortion parame-
ters of an input test object. The method is capable of multi-class object diserimina-
tion and multiple-distortion object recognition. Test results on aireraft imagery were
provided and shown to be excellent for multi-class discrimination. distortion param-
eter estimation and in the presence of noise. The new direct use of the Hough space
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is possible by use of the new and efticient Hough transform distortion trunsforma-
tions developed. A new hierarchical search method was devised that allows efticient
realization of the proposed concept. This technique also allows the Hough space 1o
be spatially quantized. thereby turther simplifving realization. If the translation of
the object is large. the use of moments (or similar methods) to center the object.
combined with a 1-D correlation and followed by matching with a few distortion-
transformed images provides the class. scale. rotation and translation esumates. For
the accurate estimation of scale. a higher spatial resolution in the Hough space s
required.
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Optical iconic filters for large class recognition

David Casasent and Abhijit Mahalamobis

Approaches are advanced for pattern recognition when a large number of classes must be identified
Multilevel encoded multiple-iconic filters are considered for this problem. Hierarchical arrangements o
iconic filters and/or preprocessing stages are described. A theoretical basis for the sidelobe level and nois:
effects of tilters designed for large class problems is advanced. Experimental data are provided for an optica

character recognition case study.

. Introduction

Advanced artificial intelligence, symbolic, and other
processors required to operate on large knowiedge
bases!” need techniques to handle a large number of
object classes. We consider pattern recognition appli-
cations when the number of object classes to be identi-
fied is large. Our approach can be applied to logic
processors (in which the input is a query) and to sym-
bolic and associative® processors. However, pattern
recognition offers a more easily defined problem, and
thus we pursue this specific application. We employ
an optical character recognition (OCR) case study ex-
ample to quantify and demonstrate remarks and re-
sults, since such a data base is easily available. Much
recent pattern recognition research has addressed al-
gorithms to achieve distortion-invariance, i.e., recogni-
tion of geometrically distorted versions of an object.*®
In this paper we consider large class problems in which
the number of different objects is large. Incorporation
of distortion-invariant techniques into the filters we
discuss can further broaden their use. Since the filters
we discuss operate on input image pixel representa-
tions, we refer to them as iconic filters.”

Section Il describes our OCR data base, and Sec. 111
reviews several basic iconic filter synthesis algorithms.
In Sec. IV we advance a theoretical analysis of the
effect of the number of training images and object
classes on the output sidelobe level and the noise sensi-
tivity of iconic filters. Section V describes several
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systems to achieve large class recognition without the
iconic filter problems associated with large training
sets of data. Experimental data are then providec
(Sec. VI) to quantify and demonstrate all major points
advanced.

ll. Data Base and Case Study

As an easily obtainable data base we selected recog-
nition of the 62 characters (26 lower-case and 26 upper-
case letters, plus the 10 number digits) in a variety of
fonts. We obtain 80 X 80 pixel images of the 62 char-
acters from 15 different magazines: Time, Scientific
American (Scienam), Datamation (Datama), Busi-
ness Week (Busweek), etc. We will refer to the fifteer
versions of each character as fonts (although they rep
resent different point sizes of each character as well)
In our experiments, we will view these as in-class varia
tions. Font identification can be achieved by othe:
methods.® Our filters are thus designed to be able t
provide the recognition of each character independen
of the input font, but without the requirement to iden
tify the input data font. This choice also allows us tes
data that are not present in the training set used t:
synthesize the filters. Figure 1 shows several charac
ters from three of the magazines to demonstrate th
similarity and differences in the fonts present in ou
data base.

. Iconic Filter Synthesis

The basic filters considered are extensions of on
type”!" of distortion-invariant matched spatial filter
with attention to our present application. For cormr
pleteness we review three types of these filters an
three classes of filters possible. This section also a
lows the terminology to be defined.

We denote objects in one class by {f,] and objects in
second class by |g,}. The members within each clas
are generally different 3-D geometrically distorte
versions (e.g., aspect views) of each object. In o




C

Fig. 1. Tyvpical characters from three difterent publications: (a)
The New York Times: (b) Datamation: and (¢) Scientific American.

OCR application the members within each class will be
different font representations of each input character/
object. We denote vector versions (e.g., lexicographi-
cally ordered images) of the objects by f, and g, and
the filters designed by h; (all are 2-D images, cr vec-
tors). When f, and g, are similar (such a filter to
recognize one class must also have information on the
other class), we specify a filter i1 so that

.-l =1(g,-h=0 o

for all n, where ( ) denotes the vector inner product

operation f7h. We restrict all filters to be linear com-
binations of all training set images
v, AR

hxpy = N a,f,(x.y) + \° [(RURERYR 2

n=] n=N 4

For N images in {f,,} and N.images in {g,}, the N + N,
coefficients a,, define the filter function. The coeffi-
cient vector a and hence the filter function h are the
solution of V a = u, where V is the vector inner product
matrix of the dataset,andu=u, =[1...1,0...]7is
set by Eq. (1) to yield 1 outputs for all N, images in
class one and 0 outputs for all N. images in class two.
The filter is thus specified by

a=Vi'u,. L)

To recognize {g,.} and reject {f . the control vector u, in
Eq. {3) is simply changed to [0...0,1...1]7, and a new
a set of weights is determined.

A multilevel filter with outputs equal to one for class
one objects and two for class two objects can easily be
fabricated using the control vectoru; ={1...1,2...2,
3...3]7in Eq. (3). Asshown, extensions of this filter
to more than two classes are possible. Binary-encoded
multiple filters can also be employed. In this case the
outputs from the filters define a digital word (e.g., 10,
01, 11, for the case of F = 2 filters) that denotes the
object class (e.g., if the outputs from the two filters are
both 1, the code word is 11 and the input test object is
in class three). Synthesis of these filters uses the same
basic technique in Eq. (3) with different u control
vectors.

MyLTiPLE MU TIRLE
FILTERS CORRELATION
PLANES

FILTER | DECISIT
NET
GENERATION (srmpLic

Fig. 2. Multichanne! frequency plane correlator with F = 1§ iconic

matched spatial filters for large class pattern recognition.!!

For large class problems we propose the usc ot multi-
level multiple iconic filters (specificaily F filters with L
output levels). The output {rom such a system is now
an F-digit word (onc output/filter) and is thus capable
of represerting L% different states or object classes (in
practice L¥ — 1 states are obtained since the all-zero
state can also occur for no input object). Prior work on
such filters has shown quite promising results. How-
ever, attention has been given to their distortion-in-
variance and no more than four object classes have
been considered for use in such filters.

Three different classes of such iconic filters can be
identified.!"" The filters described above are projec-
tion filters since the formulation specifies only the
central or peak value in the correlation of h and the
input object. For many object classes (especially
when the total number of training images N is small),
control of the central peak value in the correlation
function allows sufficient performance and specially
low sidelobe levels. We address this issue in detail in
Sec. IV. For cases when the sidelobes for one object
class are larger than the peak values for other classes
(or larger than the value at the center of the correlation
function for the same object class), correlation filters
can be used. These filters'" use shifted versions (typi-
cally four) of each training set image to control the
shape of true correlation peaks (i.e., they specify a
fixed value at the center of the correlation function and
zero values at +d. pixels away, horizontally and verti-
cally). These filters require five times the number of
training images that are needed in the projection filter,
and hence Ny effects for these filters will be worse.
The best peak to sidelobe ratio (PSR) in the output
correlation pattern is obtained with a PSR iconic fil-
ter.!" The disadvantage of this filter is that its peak
value cannot be specified. Thus since multilevel en-
coding is not possible with such a filter, the number of
classes that one can accommodate using multiple PSR
filters is significantly reduced.

These three filters are typically used as the filters in
a frequency plane correlator. Figure 2 shows the clas-
sic frequency plane correlator with four frequency-
multiplexed filters at P, and four output correlation
planes at P.. These F = 4 correlation planes are read
out in parallel in raster format in synchronization.
From the F = 4 digit output word obtained for each
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pixel location in the output correlation planes, the
class or category cf each region of the input image at P,
can be obtained.'! The use of more than four parallel
correlation planes is generally prohibitive, and thus
such an architecture can accommodate L¥ = L* object
classes. Toaccommodate large class problems, multi-
level filters (L > 2) are thus essential.

These filters can also be applied to associative mem-
ories as detailed elsewhere.!? The classic system is
shown in Fig. 3. Her~ the iuput i-D vectordatax at P,
describes an input object, and the F filters at P, are the
columns of the associative memory matrix M. The P
output vector v is the F-digit encoding of the input
object from which one can decode the object into a
member of one of L classes.

IV. Large Training Class Effects on lconic Filter
Performance (Theory)

In numerous tests of the iconic filters described in
Sec. Il we noted that the performance of the projec-
tion and correlation filters degraded (i.e., large side-
lobe levels occurred) as the number of training set
images Ny was increased. Forour large class problems
of present concern N will also be large, and thus this
issue is of significant concern. Thus we now address
this issue theoretically for the case of correlation iconic
filters. Solution of large matrices that arise in large
class problems can be addressed by advanced tech-
niques and is not of immediate concern here. The
analysis is simplified by considering the Fourier trans-
form of the correlation plane. Specifically, we consid-
er the average (or mean} u and scatter S of the magni-
tude of the Fourier transform of the correlation
function. The average u value equals the peak value in
the correlation plane (this follows from Parseval's
theorem)

SHOh = M EFR MR, [EY)

where f and £ are 1-D sequences, and F and H are their
Fourier transforms, and the summation is over the
number of pixels M in each image. We thus write the
average for an input image f, and a linear combination
filter h (described by coefficients a,,) as

w= EHE = N Ela b E) =N o, =, A

where v, denotes element (k,n) of the matrix V, and u;.
is element k of the control vector u in Eq. (3). The
scatter S in the Fourier transform of the correlaton is a
measure of the ripple or sidelobes present in the output
correlation plane. Using Eq. (4) and the filter synthe-
sis of Kq. (3), the scatter is shown to satisfy

S=ENHEF) = ot =2 NN a e, =

S ta'Val — o )

We now consider how S varies as the number of
training images Ny increases. Since the matrix V is
symmetric and positive definite, we decompose it and
easily show
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Fig. 3. Multiple iconic projection tilter associative processor sys-
tem.
a'Va=Nain, (7
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where ), are the eigenvalues of V, and a;'; are positive
constants. The term v, in Eq. (6) is positive (since
these diagonal elements correspond to the autocorrela-
tion of positive images). Similarly A\, = 0 in Eq. (7)
since V is a positive definite matrix. Although the
terms d,",)\,, in Eq. (7) are positive, the values of the
individual «, and A, change with N;. Hence for in-
creasing Nythesum in Eq. {7) [and hence the scatterin
Eq. (6)] may increase or decrease. It can be shown
that

\° uﬂ\,‘i =cN

where ¢ is a positive constant. This sum clearly in-
creases with Ny and is an upper bound on Eq. (7).
Thus the scatter S in Eq. (6) (and hence the correlation
plane sidelobes) increases as the number of training
images increases. Extensions of this theoretical treat-
ment to the various other classes of iconic filtets yield
the same trend for the correlation sidelobes and the
scatter S to increase with N7.

In numerous tests we also observed (when more
training images were used) that the dynamic range
requirements of the filter and its noise requirements
became more severe. We now advance a theoretical
basis for this effect. We consider the average ur and
the scatter Sy of the pixels in the filter image (denoted
by the subscript F). The average and scatter now
considered apply to the image plane representation of
the filter function and not the output correlation
plane. As S increases, the variations in the pixel
values in the filter image itself increase and hence so
does the number of levels required in the filter image
and also the effects ol noise (we will demonstrate this
experimentally in Sec. VI). The mean of the filter
image is

a—

u, = Efh| = E[\‘ a,,/,] =N R = Na, M. 8
where a linear combination filter is again assumed, and
where the last equality in Eq. (8) is obtained by esti-
mating E[f,| by v,,,/M.where M is the number of pixels
in the image. This approximation is realistic for our
binary images, where v,,, is the dot product of image f,,
and itself. From Eq. (8), the mean of the filter is thus
seen to be proportional to the sum of the diagonal V




weighted by the a, linear combination filter coeffi-
cients,
Proceeding similarly, the scatter is found to be

Sp= E[hY] - E"[h] (9a)
= (I/M) [Y‘ alv, (1 - L»,,,,/m]
+2 NN 0,0,00,,, = Ut/ M)
~ (1/M)a’V a. (9¢)

For cross products v,,,, we have used a similar estima-
tion for the expected value E[f.f,] = v, /M. The
second double summation in Eq. (9b) does not include
n=m. Thefinalrelationin (9c) assumes 1 — v,,,,/M ~
1 and (Unm = UnnlUmm/M) = 0,,. These approxima-
tions are valid for our OCR character example, where
the average auto projection value is v,,, = 100, and the
average cross projection value is v,, =~ 50, and the
number of pixels per image is M = 6400. From Eq. (7)
we see that Sy in Eq. (9) increases with the number of
training images Nr. This increases the filter’s dynam-
ic range. As we quantify in Sec. VI, this makes the
effect of noise more significant in filters synthesized
from a large number of training images N. In Sec. V
we advance various ways to reduce N7 and yet achieve
large class recognition.

V. Large Class Solutions

In this section we advance several solutions to the
large class recognition problem with attention to the
degraded performance of iconic correlation filters ex-
pected when a large set of training set images is used.
In Sec. VI we advance experimental verifications of
many of the suggested solutions. We note that our
theory in Sec. IV applies not only to correlation filters,
but also to projection filters if one does not look only at
the correlation peak point. If projection filters are
interrogated at the peak point only, the only limitation
on N7 is in solving the synthesis Eq. (3). We will use
this fact in several of our suggested solutions. Figure 4
shows the block diagram of a hierarchical iconic filter
system.!! The first stage of this processor employs
multiple PSR filters in a shift-invariant correlator.
The purpose of this first stage is only to locate candi-
date objects in the input field of view. The filters used
are designed with this in mind, and thus they do not
provide discrimination information. To provide en-
hanced detectability, PSR iconic filters are preferable
for this stage of the processor. The second stage of the
processor can employ multiple correlation or projec-
tic. filiers in the same processor. These filters allow
large class identification (when multilevel outputs are
provided), but they can have large sidelobe levels. By
using the outputs from the PSR correlator in the first
stage to determine where to look in the output correla-
tion planes from the second stage, sidelobe effects can
be avoided. In Fig. 4, we show a projection filter
second stage, since it allows L* class identification with

S ICRRE_ATZIRS PRT_ECT ON

NELT p3R AARZ.ECT CN <

R A ToFtEER

Fig. 4. Block diagram of a hierarchical iconic filter system for large
class pattern recognition.

F filters and with a simpler processor such as that of
Fig. 3. This filter (and its associated matrix) also
requires fewer training set images (less by a factor of 5)
than are needed in the correlation iconic filter synthe-
sis. An additional stage with correlation filters is of-
ten preferable in such a system, since some false peaks
will occur in the first-stage processor, and the investi-
gation of these points using only projection filters will
force some object class decision for all regions of inter-
est in the input scene (detected by the first filter stage).
Error correlation'? is another solution that can aiiow
projection filters to be used directly without an addi-
tional stage of correlation filters to remove false region
of interest peaks from the PSR filter.

Another modification to the system of Fig. 4 is to
perform feature space analysis in windows around the
candidate region of interest areas indicated by the
PSR iconic filters in the first stage. When F feature
space discrimination functions are used and encoded
in an F output L-level manner, a larger number ot
classes (LF) can again be identifieq and classified. If
we restrict analysis to only the central value of the
output from the projection filters, these filters are in
essence feature space linear discriminant functions
that can operate on image pixel data (iconic filters) or
on image features with equal facility.

In cases when the object size is known or can be
bounded, the window around each region of interest
image area can be set and simple techniques can be
used to place the object in each region of interest into
one of several super classes (e.g., one of 4 sets of 16
characters each). For the OCR case we have found
simple object histograms and the number of pixels in
the character and in different parts of it to work quite
well to provide such super-class separation. Such in-
formation then allows the use of separate filters, each
optimized on the smaller super class of possible objects
and each with significantly fewer N training images.
We have demonstrated iconic multilevel multiple fil-
ters in which the object class is known and the purpose
of the filters is to determine the object orientation.!*
This represents yet another extension of this hierar-
chical filtering concept.

For a specific problem (such as OCR) other informa-
tin is available such as: letters lie on lines with regular
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Table I.

Correlation Plane PSR = u/§ for Multilevel Multiple Iconic

Correlation Filters as a Fi of the Number of Object Ci
Number of
training images N Correlation plane

(5/class) PSR

10 2.04

20 1.98

40 1.76

60 1.48

100 1.52

200 0.93

400 a.0!

930 0.006

Tabie Il. Filter Image Plane Scatter Sy and Largest Pixel Vaiue as a
Function of the Number of Object Ci Nr for Different Multtlevel
Multipte Iconic Projection Filters.

Nr Sy (scatter) Maximum pixel value

2 0.02 0.05
15 Q.03 0.06
25 0.18 0.10
35 0.35 0.22
A 0.78 0.82

115 0.87 0.95
130 0.89 0.96

150 0.92 1.29
170 1.05 1.62
190 1.16 1.66
248 1.33 2.31
950 18.1¢0 a.00

spacings dependent on the font of the input data. For
this case we find that simple horizontal and vertical
projections can locate lines of text and isolate the
letters on each line. In this case the center of each
character can be determined quite simply with such a
simple preprocessing step.

A related issue of concern is training set selection.
In many cases attention to this issue can significantly
reduce N7. As an example we refer to our OCR case
study with 15 fonts of each character available. We
must select at least one image of each character. How-
ever, not all 15 fonts/character are required to be in-
cluded in the training set. To select the fonts to be
included we look at the cross correlations of each and
select those with the smallest vector inner product
matrix entry v,,,. This ensures us of the most new
information for each additional training set image cho-
sen. If the separation between output levels in a mul-
tilevel filter is AL, we select v,,, < 0.5AL as a useful
guideline to determine when to include a given font
image in our training set. InSec. VI we show quantita-
tive data on the ability of iconic filtrs to recognize
characters in new fonts not included in the training set
data.

VI. Experimental Results

To .btain a quantitative estimate of a number of
object classes one can include in a correlation filter,
multilevel multiple iconic correlation filters were com-
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puted with one object (character)/class or font and five
shifted versions of each (thus N/5 equals the number
of classes and fonts). For each case, u and S of the FT
of the correlation plane were calculated. The resul-
tant PSR = u/S is listed in Table I. Assuming PSR =
1.5is required, we find that only Ny = 100, or 20 object
classes, could be included in one OCR correlation fil-
ter. We note that we have found that this value is
much less for characters than for other objects, and
thus OCR appears to represent a worst-case guideline.

To quantify the effect of N1 on the dynamic range ot
the filter and its image plane variance, we computed
the mean ur and scatter Sr in the filter’s image for
multilevel multiple projection iconic filters with dif-
ferent numbers of training images used (with one im-
age/class and with N now equal to the total number of
object classes or fonts). These data are shown in Ta-
ble II. In Table II we also include the value of the
largest pixel in the iconic image plane filter. We note
that the scatter (variance of the pixel values in the
filter) increases with Ny The maximum pixel value in
the filter image increases with N7. The number of
filter image pixels with large values also increases with
Ny. Thus more dynamic range or gray levels are re-
quired to represent filters synthesized with large Nr.
Also, when noise is present, if the noise changes one of
the large-valued (or key) image pixels, this will have a
much larger effect than if other image pixels are
changed. Since the number of such key pixels and
their relative significance increases with N, we expect
noise effects to become worse for large class filters
synthesized from a large number of images. We now
quantify this result and the amount of noise allowable.

The filters considered in subsequent tests were syn-
thesized from 62 characters with 4 fonts of each (the
fonts used were NY Times, Datama, Busweek, and
Forbes). The multilevel multiple projection filters
used F = 4 filters with L = 3levels (0.33,0.66, and 0.99).
thus allowing Lf = 31 = 81 classes, which is sufficient to
accommodate the 62 character classes. When these F
= 4 filters were shown any of the 62 X 4 = 248 charac-
ters, the projection values were ideal and perfect 100%
recognition was obtained. Table III shows the worst-
case outputs (all are within 107% of the exact projection
values).

We now consider the effect of noise on the perfor-
mance of these filters. To produce the noise we gener-
ated a random array of numbers between 0 and 1. By
thresholding this array at «, we produced a binary
noise array N(x,y) with pixels equal to 1 if their value
was <a. We then applied the same N(x,y) to each
character image with image pixels changed (Oto 1 or 1
to 0) if the corresponding (x,v) pixel in N(x,3) is 1. We
refer to the result as an image with binary noise. Test
results for a = 0.5 corresponding to ¢}, = 0.25 for the
font Busweek are shown in Table IV. Only the worst-
case results are shown (those data with projection val-
ues which departed by the most from the ideal values).
The projection values are shown with their difference
from the ideal values given in parentheses. Asseen, 61
of the 62 images were correctly identified. We assume



Table l. Worst-case Tests of 100 % Perfect Pertormance 248 Class Set of Four Multi-level (0.33, 0.66, 0.99)
Iconic Filters

Input test

Response tor filters #1 F4

character F1 k2 3 [
E 0.3299 N.GGO] 06600 1L.65499
T 10,6600 0.3299 0301 1.98499
h 01,6599 (.6600 0.9899 H.8599
[ .4800 0.3299 0.3300 O.44901
G 01301 4 1.6H949 03300

Table IV. Worst-Case Binary Noise Test Results (« = 0.5, 02 = 0.25, Busweek)

Input test

Response (and error) for filters F1-F4

character 1 F2 F3 F4
2 (1.240.09 QA5 0.62(0.04) 07500240
T 0.57(0.09) 112810.05) 0.29(0.04) 0.91(0.08)
W QAR(0.08) 35(0.02) 0.600,06) 1.0:310.04)
h A3 (0.02) O.60(0L06) 0.89(0. 1) 0.6210.04)
u 0.62(0.04) Q.85310.1.4) 0.9200.07) 0.901.09)
I 0.9000.09) (1L240.09) 0.28(0.05) (910.0%)
3 0.28(10.05) Q200013 0.340.01) 0.5610.10)
i .27(0.06) 0.29¢0.0.4) 0.5710.09) 0.3000.03)
@ 0.28(0.05) (LORI0.0%) 0.2900.04) 0.3110.02)

Table V. Worst-Case Gray Level Noise Test Results o2 = 0.1, Forbes)

Input test Response tand error) for filters F1-F4

character F1 F2 F3 F1
4 0.3710.04) 0951008 0.95(0.04) 09000091
R 033003 0310002 O.3810.05) 0320001
v OAR0.08) Q.3110.02) 0.6210.0.0 [EANUTIRVRY]
t L1700 1) Q.3900.06) O.2000.13) A0 12
u Q9008 034000 GATHOO4 (LA
AY |ARTIRAVE Y] 4340001 O.6H0.06) D.911D.0%)
A 0.41(0.08) 0.2710.08) 0.6210.04) 0.9710.02)
Qa n.2he12) DL2801L0O3) 1.0200.03) O3 110.02)
4 GAR0.00) O.6X(0.02) Q35002 0.3200.01)
0 Q3T 020,01 L3910.06) 0.2700.06)

projection values with errors below (AL)/2 = 0.165 will
be correctly thresholded.

Binary noise is typical of the noise expected in OCR
applications.!"! We next provided gray-level noise
tests. We generated zero-mean Gaussian noise at dif-
ferent variances and added this to each image. Weset
pixels below 0 to 0 and pixels above 1 to 1, but retained
all noise gray levels between 0 and 1. Test were con-
ducted of all 248 images with noise present. The
worst-case results for the font Busweek are shown in
Table V in the same format used in Table IV. Asseen,
60 of the 62 images were correctly identified. The
gray-level nuise used had o}, . = 0.1. When the noise
variance was reduced to o7, .. = 0.08, we obtained 100%
correct recognition of all characters. We note that the
input SNRis ahout 31 for o7, ;.. = 0.08. Figure 5shows
several binary and gray-level noisy input images cor-
rectly identified.

We now return to Table IT and our theoretical analy-
sis indicating that noise sensitivity and the number of
key image pixels increases with N;. Refer to Table V,
which shows that the projection of the letter E on filter

F4 was 0.75 (in error by 0.24) with o7, = 0.25. We

reduced the noise threshold to produce noise with o7, ,,...
= (.24 (only 0.01 different from the prior value). For
this noisy image of the letter £ we found the projection
of the letter £ on the fourth filter to be 0.98 (nearly the
ideal 0.99 level). Thus with a slightly different noise
realization or a slightly different noise level (such that
key image pixels were not affected), much larger noise
levels can be tolerated. By selecting different projec-
tion values for different images and by assigning simi-
lar projection codes to similar characters, control over
the number of key filter pixels and a reduction in their
value is possible.

We now consider tests of these iconic filters with
input test images in fonts that were never seen during
filter synthesis. Table VIshows the worst case results
for tests on input data in the font Scienam. As seen,
only one error in all 62 characters occurred. Thus
properly designed iconic filters can recognize test data
that they have neverseen. By including fonts of sever-
al selected characters, full 100% recognition is possible.
The present tests were included to show performance
with a limited training set.
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Table VI. Worst-Case New Fonit ( Scienam) Test Results (Error From Ideal Level in Parenthesis)

Input test Response (and error) for tilters F1F4

character Font Fl F2 F3 F4
r 0.48(0).18) t.1400.15) 0.92.0.01) 0.92(0.07)
N 0.56(0.10) 0.3100,02) 0.28(0.05}) 0.670.01)
~ Times 0.97(0.02) 0.30(0.03) 0.3040.03) 0.36(0.53)
2 0.370.04) 0.32(0.01) 0.3610.00) 1.OLH0.02)
4 0.31(0.02) 0.:3:3(0.00) O.6910.03) 0.31(0.02)

Fiw. 50 Typical noisy characters with ditferent noise variances: a)
= 008 (zrav-level noised; thy o' = 0.1 tgrav-level noiseh: ted a- =
0.24 (hinary noise).

For practical optical realization the dynamic range
of the filter function cannot be seven decimal digits as
indigital simulations. To quantify the amplitude and
phase dynamic range required in the frequency-do-
main iconic filter, we computed the filters used to
digital machine accuracy and then quantized these
filters to different numbers of amplitude and phase
levels. The worst-case test results were analyzed for
the correlation of our multilevel (L = 3) multiple (F =
4) filters in tests against the 62 characters in the train-
ing set font New York Times data. These results are
typical of those obtained for other fonts. These re-
sults showed that a filter quantized in the frequency
domain to 32 amplitude levels and 360 (1° resolution)
phase levels in the frequency plane performed most
excellent, with only two errors out of the 62 characters
(96% recognition) with these low quantized filter lev-
els. The use of slightly more amplitude levels and
much less phase levels also yielded perfect 100% recog-
nition. Other tests performed considered the unifor-
mity of response of the input spatial light modulator
used. These tests showed excellent performance for
5% worst case variation in the spatial uniformity of the
input image plane data. We found that up to 30%
worst-case nonuniform spatial response in the input
device could be tolerated and acceptable results still

2272 APPLIED OPTICS / Vol 26.No 11 / 1June 1987

obtained. Other tests involved rotations of the input
object which showed no degradation loss with several
degrees of rotation of the input object.

V. Summary and Conclusion

The issue of large class object recognition has been
addressed. New filters for such problems have been
described and several hierarchical architectures using
them have been discussed. Attention was given to
filter synthesis problems foreseen when the number of
classes is large. A theoretical basis for the sidelobe
and noise performance of such filters was advanced
and quantified by experiment. Initial results are
quite attractive. Hierarchical correlators and multi-
level multiple iconic filters are a viable and attractive
solution. They appear preferable to an exhaustive
search of all available training images.!”> Training set
selection can reduce the number of images necessary
and hence clutter. Proper code selection can improve
performance and reduce various error sources. Near-
perfect recognition of a large number of objects
(~1000) with only four filters with moderate filter
dynamic range requirements appears possible. Initial
OCR tests have quantified these remarks.

The support of this research by the Independent
Research and Development Funds of General Dynam-
ics Pomona and by a grant from the Air Force Office of
Scientific Research is gratefully acknowledged.
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ABSTRACT
A new and efficient real time technique to produce a string code description of the contour of an
object, such as an (angle, length) = (¢, s) feature space for the arcs describing the contour. is

detailed. We demonstrate the use of such a description for an aircraft identification problem case
study. Our (¢, s) feature space is modified to include a length string code and a convexity string
code. This feature space allows both global and local feature extraction. The local feature extraction
follows human techniques and is thus quite suitable for a rule-based processor {as we discuss and
demonstrate). Aircraft have generic parts and thus are quite suitable for the model-based description.

1. INTRODUCTION

Aircraft recognition is a classic pattern recognition problem recently surveyed {1;. Nany feature
spaces have been suggested for such multiple degree of freedom pattern recognition problems. These
include: moments [2.3 (which require large dynamic ranges and are noise sensitive when made
distortion-invariant); Fourier descriptors [4,5; (which still require feature extraction, computationally
intensive matching lists, and which do not lend themselves to use of local information or features):
and various curvature features. Our proposed technique handles global and local features, includes
feature extraction with in-plane distortion-invariance and avoids a large matching search.

We selected a st:.ng code description of the object. Other work with similar descriptions [6-9; has
also been used and their VLSI realization discussed [10-12]. However, our string code description (¢. s)
= (angle, length) of the arcs on the contour of an object is generated most efficiently and allows
global and local feature space analysis. Global features are necessary for general problems and local
features allow specific problems to be solved quite effectively. The local features we use correspond to
specific object parts and thus allow rule-based analysis (since this is the manner in which humans
achieve identification). Our edge description is different from the conventional chain code [8] and we
do not convert the chain code to an (x, y) or other description as others [7] do early in the processing
period. Our rule-based technique differs from syntactic [13] techniques. Our rule-base follows a
forward chaining control flow as does SPAM [14]. As our model knowledge, we employ specific
aircraft structural and part information.

Section 2 describes our case study, model base, and data base. Section 3 provides an introduction
and overview of our frocessor and our feature space. Section 4 details our new efficient feature space
generation technique and includes typical results. Section 5 briefly discusses our rule-based processor.




2. DATA BASE

The case study we consider is the identification and orientation estimation of 10 different aircraft
Fig.1 shows the top-down views of these aircraflt grouped by the functional role of the aircraft In cur
tests, all aircraft are 128 x 128 pixels in resolution. Our model base contains different polygon
descriptions of all aircraft and theis parts, from which any aspect view can be produced quite eusily
(15].

3. PREPROCESSOR OVERVIEW

Our full processor contains five major sections as shown in Fig.2. The preprocessor performs edge
enhancement (this is necessary to produce good peaks in the Hough transform space we will employ)
and generates a clockwise ordered list of pixel coordinates for the contour or boundary of the obhject
(using classic techniques [16,17]). The feature space produced is a (&, s) description of the angle (¢)
and the length (s) of all arcs clockwise in a string code connected object boundary or contour
description. An aspect estimator unit determines if the aircraft is being viewed nearly top-down or if
an out-of-plane distorted image is being investigated. A rule-based or an associative processor are used
(depending upon the aircraft object’s distortions). In this present paper, we discuss the rule-based
processor. Thus, in this initial work, we will restrict attention to pearly top-down aircraft views

4. EFFICIENT (¢, s) STRING CODE FEATURE SPACE GENERATION

The first step is to reduce the clockwise ordered contour pixel list to N (approximately 20-30)
vertices. Fig.3 shows a DC10 (Fig.3.a) and its boundary description with the vertices noted (Fig 3.b)
The N vertices define N arcs for the boundary. each with a length (s) and an internal 2ngle (o)
Fig.3.c defines the angle ¢. The result is a (¢, s) string code.

The block diagram of our efficient (¢, s) string-code generation system is shown in Fig.4. We use
the clockwise-ordered contour list of the boundary pixels (x, ¥}, form the Hough transform (HT) of the
input from the original data, and locate the six major {(and true) HT peaks and their (p, #) values.
We then Hough transform each contour pixel and check if it evokes a peak at one of the (p, ) six
major HT peak parameter locations. This assigns most contour points to the six major lines in the
image and gives automatically (without time-consuming trigonometric operation) the angle ¢ and the
length (s) of these lines. Only a small fraction of the pixel points in the contour list remain to be
assigned ¢ and s values. Each of these is a connected set of pixels that lies in a gap between
previously assigned points. We achieve the (¢, s) description of these pixels into lines by a
conventional split-line fitting method [18,19]. This split-line technique is computationally expensive,
but (with the six major lines and our HT technique) +his needs only to be applied to a significantly
reduced number of points in the contour list. Thus, this technique generates the full (¢, s) string code
description quite efficiently.

A HT converts lines in the input into points in a {p, 8) parameter Hough space, i.e. a. coordinates
corresponding to the normal distance (p) and the angle (¢ with respect to the x axis) of the normal of
the line, with six peak heights proportional to the number of points on the line (or the length of the
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Figure 4: Block diagram of an efficient (¢, s) string code processor

line). Fig.5.a shows the HT for the DC10 with the nose vertical. Fig.5.b shows the HT for th
with the nose horizontal The two inajor peaks in Fig.5.a lie on the #= 0° line and in Fig.5b
on the 6= 90° line. These two major peaks denote the presence of the fuselage and its orienta
Fig 5 we see six major peaks, however this does not always occur (when noise, quantization
image resolution, and 3-D roll and pitch distortions occur). To demonstrate this and techn:
overcome these problems, we show (in Table 1) the 10 largest HT peaks obtained for the
oriented at 120°. This demonstrates specifically that the largest six HT peaks do not corres;




C10
lie
n
the
to
J10

. to

o

the major lines in the image, specifically HT peak 6 and 7 are false peaks that are larger than pe
(which is the next largest true peak). We note [20] that such false peaks occur close to the true |
(within three pixels for our aircraft data). Thus, we employ an algorithm that ignores HT s
peaks that lie within four pixels of the large peak. Employing this rule, the six proper p
corresponding to the six major lines in the aircraft image emerged (Table 2). Table 3 lists the
aircraft lines corresponding to the six major HT peaks and Fig.6.a shows the lines in the airc
image itself. Fig.6.b shows the resultant final (¢, s) image with all vertices obtained (including t
obtained by the split-line fitting technique).

An efficient technique to assign the # and p parameters of the six HT peaks to point in the con
list is now detailed. To achieve this, we transform each pixel coordinates (x, y) in the clock
contour list into a sinusoid. This sinusoid needs only be evaluated at the six 6 values of the
dominant HT peaks and at the p coordinates within each. Thus, these HT operations on the con
list are easily achieved. Since we expect a number of successive pixels in the contour list (those
each arc) to correspond to the same HT peak point, the processor can be quite fast (and very effici
compared to typical techniques involving extensive trigonometric calculation).

We now discuss the descriptions we employ of the string code representation of the object
symbolic descriptor. We first consider the full (¢, s) string code with the exact analog values fo:
angles and lengths. Next, we consider a convexity string code. This lists only the convexity of
angles of the arcs in the boundary representation as convex V (if ¢ < 180°) or concave C (if ¢
180°). Last, we consider a length string code which lists only the length of each arc as : very sh
short, medium, long, and very long. These are expressed in terms of maximum differ
A= Lmaz_Lmin in the length L of the arcs for the input image. Each length region is A /6 ex:

for the medium length region which is A/3 in extent. These different symbolic string «
descriptions of the object contour are found to be quite useful for global and local rule-b:
processing, as described in Section 5.

5. RULE-BASED PROCESSOR

Our rule-based system employs if-then rules, a context-limited and rule-ordered cortrol strat
and forward chaining with five rule groups used as we now describe. The first rule group (star
rules) locates the fuselage.

The second rule group concerns substructure search rules. The purpose of this second rule grou
to locate all separate regions of an object and to divide them into left (L) and right (R) regions 1
respect to the fuselage. We first extract the fuselage and all vertices corresponding to it. "
separates the contour list into L and R regions. We group these into separate connected reg
(closed polygon boundaries) corresponding to parts of the object. For each such region, we calcu
its area, perimeter, compactness, and its position with respect to the fuselage. Various rules are 1
to determine the type of each region. Three representative examples are given below:




Al o g

Figure 5. HT of DC10 with nose oriented vertical (a) and horizontal (b)

Hough Peak p(pixel) B{degree) Peak Heigh
1 3 165 10
2 -19 114 9
3 -5 60 9
4 19 6 9
S 5 60 8§
6 -20 111 7
7 20 9 6
8 3 135 6
9 -7 63 5

10 -5 162 S

Table 1: Data on the 10 largest peaks for a DC10 with its nose at 120°

Hough Peak p(pixel) 6(degree) Peak Heig!
1 3 165 1C
2 -19 114 §
3 -5 60 ¢
4 19 6 )
5 5 60 §
6 3 135 €

Table 2: Data on the six largest HT peaks using our false peak algorithm.
The six peaks noted are the correct ones.




Corresponding Aircraflt Part

------------------------------------ o
Right Line on Fuselage \ o
Left Line on Fuselage ey
Right Front Wing Line \ —
Right Rear Wing Line
Left Front Wing Line /~ T v Z,
Left Rear Wing Line / Z/ -
(a) (b)
Table 3. 6 major lines in an aircraft Figure 6: Aircraft Image with

(a) only the six major arcs and (b) all arcs

Rule 1: Wings are the largest regions in L and R. They must have the proper
spatial relationship to the fuselage.

Rule 2: If the convexity symbolic code for a region has all vertices convex,
then this region is a wing with no engines etc on it.

Rule 3: If the convexity symbolic code for a region has two concave vertices
out of four adjacent vertices and if this correspond to short arcs, then this
region is a wing with an engine etc on 1.

From the location of the concave vertices and arcs of short length, the position of the engine et
(refered to as a “blob") or small structure on the wing (or fuselage) can be determined. We discus
this further below. Fig.7 shows examples of a wing region with no engine (Fig.7.b) as detected from 1t
convexity code (Fig.7.a). Fig.8 shows an analogous example when the convexity code (Fig.8.a) show
several C sections and hence indicates the presence of an engine in the image of Fig.8.b. Followin
such rules, we can segment the L and R regions into parts as shown in Fig.9 (wings, tails, and blobs)

The third rule group we use provides a check on the top-down orientation estimation (this
obtained from the number of regions in L and R, the areas of these regions, and the symmetry of th
L and R sections). yaw estimates (these are obtained from the 6 coordinate of the fuselage peak in th
HT space), and roll estimates (from the symmetry or ratios of areas in regions L and R).

The fourth rule group concerns substructure rules. These are intended to identify the small or Joc:
features or object regions or parts. The best example of this concerns "blobs" on wings an
specifically whether these are engines, missiles, or fuel tanks. For the image data base we considerec
we note (from Fig.1) that if the blobs appear in the center of the wing, the blob is an engine (e
DC10); and if it appears on the tip of a wing, it is a missile (e.g. F104).

The fifth rule group contains classification rules. We note three examples below. There ar
approximately 40 rules used in total The following are intended to be representative examples. Befor
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Figure 7: Example of a convexity code (a) for a wing region with no engine (b)

Vertex Convexity Code

1 A%
{ 2 A%

3 A%

4 C
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1 7 C
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(a) (b)

Figure 8: Example of a convexity code (a) for a wing region with an engine on it (b)

Figure 9: Representative left (L) and right (R) segmented regions of an aircraft




discussing these, we note one additional parameter included in our feature space parameters the
angles ¢, and ¢, that the wings make with the fuselage at points A and B (see Fig.10).

oy

Vertex A

N\

3 Vertex B /

Figure 10: Definition of the internal angles ¢, and ¢,

at vertex points A and B in an aircraft

Using these blob and angle parameters, we note three rules as examples:

Rule 1: If a blob is present on a wing, and if it is an engine (i.e. in the center
of the wing), and if the angle ¢, at vertex A (Fig.10) > 2457,

then the aircraft is a Swearingen.

Rule 2: If a blob is present on a wing, and if it is an engine, and if the angle ¢
at vertex A < 245° then the aircraft is a DC10.

} Rule 3: If a blob is present on a wing, and if it is not an engine (i.e. it exists
at the tip of the wing), then the aircraft is an F104.

Comparison of the Fig.1 images and these rules shows that these rules correctly classify these aircraft
noted.

6. SUMMARY AND CONCLUSION

We have advanced an efficient HT technique to assign lengths and angles of most arcs to a
clockwise pixel coordinate list of the contour or boundary points. This is complemented by a split-line
fitting algorithm which need be applied only to small gaps in the residual boundary. For the case
study of an aircraft data base (which is very suitable for model-based description), we separate the
object into L and R regions, each described by connected polygons, each of which are identified as




wings, tails, fuselage, engines, etc. Convexity and length symbolic string codes aid this separatior
This feature space is most efficiently obtained and it allows us to apply both global features (suitabl
for general pattern recognition) and local features (necessary to handle distorted objects and parti:
images). The local features used correspond to specific object points (easily obtained and described 1
our symbolic notation) that humans also relates to. The feature space and case study considere
(aircraft identification) lends itself naturally to a rule-based processor. Examples of rules and their us
in the identification of aircraft classes were provided. The general technique is the most flexible. Whe.
augmented with an associative processor, the potential of the system is even further increased.
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Real-time deformation invariant optical pattern
recognition using coordinate transformations

David Casasent, Shao-Feng Xia, Andrew J. Lee, and Jian-Zhong Song

The well-known scale and rotation invariant polar-logarithmic coordinate transtormation is used to achiev
in-plane distortion invariant pattern recognition. The coordinate transform is produced by a computer
generated hologram on a laser printer.  Attention is given to weighting terms in the output and their effect o1
resolution and the number of input plane pixels removed near the origin.  The optically produced coordinat
transtormed input pattern is interfaced to a correlator by a pocket liquid crystal TV 1o provide real-tim
processing. Experimental results are included.

{. Introduction

Optical pattern recognition using a matched spatial
filter and a correlator is a well-known technique.! 1tis
advantageous due to its high speed and parallel pro-
cessing. But the conventional correlator cannot rec-
ognize scaled or rotated images of the reference object.
For example, for a 1% scale change of the reference
object, the SNR of the resultant correlation peak can
be 10 dB down from that of the autocorrelation, and a
20-dB loss can occur for a 1.7° rotation of the input
from the reference.~ This disadvantage limits the po-
tential applications of the conventional correlator.
One solution to these problems is development of a
space variant optical processor which is realized by
applving a coordinate transformation preprocessing
operation to the input and reference data.” Coordi-
nate transformations, such as the logarithmic transfor-
mation (which results in a Mellin transformation,
which is scale invariant), the polar (r — #) transforma-
tion (which resuits in rotation invariance), and the
combination of the two? (the Inr — 8 coordinate trans-
formation, which results in scale and rotation invari-
ance), have been reported.

Here we report the optical implementation of defor-
mation invariant real-time optical pattern recognition
using a computer-generated hologram (CGH) and a
liquid crystal television (LCTV). The CGH is used
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with a Fourier transform lens to perform the Inr - ¢
coordinate transformation. The use of a hologram
consisting of many interferometrically produced holo-
graphic optical elements (HOEs) for coordinate trans
forms has been demonstrated.’ The princinle of using
a CGH for a coordinate transformation was Yemon-
strated earlier for the Mellin transform® and for the
circle-to-point® and Inr — ¢ transformations.” A dis-
cussion of the fabrication of our CGH is presented ir
Sec. Il together with several issues associated with the
optical coordinate transformation and their effects or
our real-time correlator. The LCTV and a TV camer:
are used to connect the coordinate transform prepro-
cessing system to a conventional optical matched spa:
tial filter correlator in real time. The LCTV intro
duces a phase distortion in the wavefronts passing
through it which has been corrected using a phase
conjugate filter.® Real-time scale and rotation invari
ant pattern recognition is demonstrated experimental
ly in Sec. III. Qur conclusions are advanced in Sec. [V

Il.  Design of the Coordinate Transformation CGH

The system to achieve the Inr — 6 coordinate trans
formation is shownin Fig. 1. The input f(x,y) is placec
in contact with a continuous phase CGH with trans
mittance h(x,y) = exp[j¢(x,y)], where ¢(x,y) is thi
phase distribution of the phase filter. Lens L, form:
the Fourier transform of the product f(x,»)h(x,3) a
the plane P, where we find

Flae) = ” ftxad explpotay]

X expl =12/ xw + ved|dxdy. (1

where A is the wavelength of the laser used, and f;. is th:
focal length of lens L,. For the Inr — # coordinat:
transformation, we desire

.- i N
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wixy) =In (" 4+ v = o,

r{xy) = —tan” '(v/x), (2)

and the integral in Eq. (1) can be solved using the
approximate saddle point integration method.” For
the coordinate transform in Eq. (2), a continuous
phase solution ¢(x,y) exists since u(x,y) and v(x,y)
have coatinuous partial derivatives and since the par-
tial derivatives of u with respect to y and of v with
respect to x are equal. The desired phase function is

otea) = /A [x In(e* + )Y = ytan T (w0 = x]. ()

A. CGH Design

There are several techniques that may be used to
form the desired phase filter.!" Since the amplitude
transmittance of h(x,y) is one, we need only record the
phase function, and since this is recorded by position-
ing the data on the mask, binary CGH recording tech-
niques can be used. Since a continuous phase function
solution exists, we thus use a binary computer-gener-
ated interferogram!! for the CGH. The interferogram
is the interference pattern of ¢(x,y) and a plane wave
reference at an angle 6. The maxima of this interfer-
ence pattern (the locations of the interference fringes
or the lines that must be plotted on the CGH) must
satisfy

2rax — olx ) = 2wn, (4)

where n is an integer which denotes different fringes
and where the carrier frequency « = (sin #)/\. The
recorded CGH is generally photoreduced onto film,
and Eq. (4) describes the final CGH., To avoid over-
lapping between the first-order and second-order dif-
fracted waves in the diffraction plane P, « must satis-
fy!!

dax )

« > (1.5/7) max - (Y

dy

Inserting Eq. (3) into (5) with x;,,x and y,.x being the
maximum size of the input image or the CGH, we
obtain

a > /A I+ vaad (6)

max -

This result has not previously been given full attention
and is of concern since it affects resolution, as we
discuss in Sec. IL.C. We note that we detect only the
first-order diffraction pattern at P;. In the experi-
ments that we performed, we used the parameters x .«
=5mm, yn. = 5mm, A = 0.6328 um, and f; = 400 mm.
From Eq. (6), we then find « > 23 line pairs/mm is
required. We used n = 400 fringes in Eq. (4) for « = 40
line pairs/mm. We solved for the various (x,y) that
satisfy Eq. (4) for each value of n, connected these
points, plotted the associated lines on an Imagen 300
laser printer, and then photoreduced the plot to the
final CGH size of 10 X 10 mm.

B. Space Bandwidth Product Requirements

This Inr — # input image representation space (that
is scale and rotation invariant) is detected by a TV

—
Laser
Light
’L
Input CGH C i
oordinate
fx.y) hixy) Trans;orm
F{u.v)

Fig. 1. Schematic of optical coordinate transformation system.

camera at P, of Fig. 1, and the electronic output fron
the TV camera is then fed to an LCTV in the input
plane of an optical matched spatial filter frequency
plane correlator. We now relate the space bandwidtt
product (N, X N;) required in the Inr — 8§ space at P, tc
the input image space bandwidth product N X N = NV*
at Py. The radial Ar and angular A# spatial sampling
increments are both ,2/N, i.e., a factor of 2 larger thar
the reciprocal of the number of input samples N. In.
cluding the effect of the number of samples M omitted
near the origin of the input image pattern, we find

N, = NiInIN/M)/\ 2. N, = (4 N/y2) tan HUN/2). 7

These results follow from others? extended to the case
of an Inr — @ transform. The 2-D space bandwidt}
product required at P, to sample adequately the Inr — ¢
plane is thus

NN, = 2N In(N/M) tan ™ (N/2) = o N7 IntN/M), (8
where the final result follows for large N,

C. Intensity Weighting Effects

To evaluate Eq. (8), we must select M. To do this, we
consider the weighting present at P and then obtain ¢
new criteria for selection of M and hence the P, resolu
tion required for a given input P, resolution. Th
intensity of each transformed point (u,,v,) in the P
output F(u,v) is!?

[Fle, e ) = s froga Ve o, —ob
= IV a e + 7] (t

where ¢,,, denotes the partial derivative of ¢(x,v) wit.
respect to m and n and where (x,,y.) is the input poin
in P, that contributes to the output point (u,,,) in P
From Eq. (9), we see that the P; pattern associate
with a given input P, point depends on the intensity ¢
each input point and its position in Py. Our concern
the effect of the positional weighting factor given b
the square radius r? = (x* + »¥} of each input point i
P,. The effect of the r’ = (x? + y*) weighting factor

best described for the case of an input f(x,y) pattern
uniform intensity. In this case, points further froi
the optic axis in P, will be brightest in the coordina
transform pattern at P;, and points near the center
P, (near r = 0) will be the dimmest in P,. This

attractive since these points must be omitted in the s
coordinate transform. Tapering of the input illum
nating light can conceptually correct this effect (e
cept near r = 0, which is not of concern since this regic
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is blocked). Without correction for this effect, a
scaled input image will result in the same shaped P,
pattern but with a different intensity (larger intensity
if the input object is larger). When this transformed
pattern is used in a correlator, the r* weighting is of no
concern, since the matched filter would also include
the same r? weighting.

Our present concern with the > weighting term in
Eq. (9) is it effects on M and the size of each diffraction
order in P,. Points near r = 0 in Py map to high
frequencies, and these frequencies approach infinity
for P, points approaching r = 0. Thus separation of
diffraction orders at P, becomes impossible and re-
quires an increasing « unless M points near r = 0 are
omitted at Py. The « calculations in Egs. (5) and (6)
considered such issues but do not readily allow one to
select M. Fortunately, the transform intensity of the
points near r = 0 is so weak due to the r* attenuation
factor in Eq. (9) that they can be ignored, and thus P,
diffraction orders of finite size result. If we assume
that plane P, intensities for which the weighting factor
in Eq. (9) is <1% of the maximum can be omitted, we
find that this corresponds to N/M = 10in Eq. (8). The
space bandwidth product N,N, at P; is now related to
that of the input (N?) by (N.N,) = 7.2N%.  In our
system, the coordinate transformed image at P, is fed
into the LCTV, which has a square resolution of 120 X
120. For this output P, space bandwidth, the resolu-
tion that our CGH can accommodate is ~40 X 40. The
choice of M affects the amount of scale change that the
system can accommodate,” but our N/M = 10 choice is
sufficient for a large range of scale.

Another issue of potential concern is the intensity of
the output from a correlator with P; as an input.
When the input image rotates, the transformed output
image is cyclically displaced along the vertical axis at
P,. In a correlator, this can result in two correlation
peaks rather than one. The intensity of the two peaks
will sum to the intensity of the single autocorrelation
peak, and one peak will always be at least 50% of the
intensity of the autocorrelation peak. This effect can
be avoided by synthesizing a CGH and the matched
spatial filter to cover a rotation range from 0 to 4=
rather than 0 to 2x. For the case of a scaled input, the
P, pattern shifts horizontally depending on the scale
factor and intensity of the pattern increases for scale
increases. A correlation output threshold set based on
the minimum scale expected (this also affects the
choice of M) should thus be used (or different correla-
tion plane thresholds can be used for different vertical
correlation plane coordinates). Alternatively, from
the dc value of the Fourier transform of the coordinate
transform of the input, an estimate of the energy of the
object is available and can be used to set an adaptive
correlation threshold.

. Real-Time Deformation Invariant Correlation Results

The CGH was tested in the system of Fig. 1 with
various input aircraft and letter images. The output
P, pattern in Fig. 1 was seen to remain unchanged
(except for shifts) for rotations and scale changes in the
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terv "~ MSF

Fig. 2. Real-time optical correlator system schematic,

P, input images. The P output transformed pattern
was found to shift horizontally by Ina for input scale
changes a and to shift cyclically vertically proportional
to input rotations. This verified the use of the CGH
for the desired Inr — 6 coordinate transform.

To perform deformation-invariant optical pattern
recognition in real time, a spatial light modulator such
as the LCTV is required to record the input P, pattern
and often also the coordinate transformed pattern at
P; of Fig. 1. If the P, data are used as a feature space,
the system is modified slightly!? to provide a shift
invariant P output which can then be detected and fed
to a feature extractor and classifier. In this paper, we
concern ourself with the case when the P, data are fed
to the input of a correlator (as shown in Fig. 2). In this
case a device such as an LCTV is required to contain
the P, data from the system of Fig. 1. We achieved
this by feeding the TV detected output of the P, pat-
tern of Fig. 1 to an LCTV at P, of Fig. 2. The phase
errors of the LCTV are corrected for by the phase
conjugate hologram (PCH) shown." A matched spa-
tial filter of the coordinate transformed object to be
recognized is formed at P, with the beam balance ratio-
chosen to yield the optimal correlation SNR. The
output correlation is produced at P;, where it is detect-
ed by a camera and displayed on an isometric display.
The aperture at P. passes only the first-order diffract-
ed pattern from P,. (Several diffracted orders exist
due to the regular pattern of pixels on the LCTV.)
This removes the effect of the fixed LCTV pattern and
improves the SNR of the output correlation obtained.:
The video output from the camera in P; is amplified
and partly saturated to improve the output display
and reduce the r* weighting factor in Eq. (9).

The results of our real-time experiments on the sys-
tems of Figs. I and 2 demonstrating scale and rotatior.
invariant pattern recognition are now discussed. Fig-
ure 3 demonstrates rotation invariance. Figure 3(a’
shows the original input image used, the letter X, and
Fig. 3(b) shows the autocorrelation of its coordinate
transformed pattern with the peak in the center of the
P; correlation plane. The size of the input characters
was ~50% of the input field of view with an equivalen!
resolution of ~20 X 20 pixels in P, of Fig. 1. Figure
3(c) shows the Inr — 8 coordinate transform of Fig. 3(a)
This was used to synthesize the matched spatial filte:
at Py of Fig. 2. Figures 3(d) and (e) show the isometric
displays of the P; output correlation plane for 30¢
rotations of the input image clockwise [Fig. 3(d)] anc




!

Fig. 3,
data: ) input objects (b the autocorrelation of the coordinate

Real-time laboratory rotation invariant object recognition

transformed pattern: 1¢) the coordinate transtormed pattern; 1)
correlation tor an input ohject rotated clockwise by 30°, te) correla-
tion tor an input object rotated counterclockwise by 30°,

counterclockwise [Fig. 3(e)], respectively. These fig-
ures show a large correlation peak whose shape and
peak value are quite constant. This indicates the oc-
currence of the reference object in the input image.
The output correlations clearly demonstrate that the
correlation peak is maintained under input rotations
and that it is displaced up and down proportional to
the rotations of the input pattern.

The scale invariance of our real-time system is dem-
onstrated in Fig. 4. The same original image and
matched spatial filter were used [Fig. 3(a)]. Its coordi-
nate transformed pattern [Fig. 3(c)] and autocorrela-
tion [Fig. 3(b)] were shown earlier. Scaled versions of
the reference input, as shown in Figs. 4(a) and 4(c),
withscale factors of 1.3 and 0.7, respectively, were used
as inputs. Figures 4(b) and (d) show the isometric
displays of the corresponding output correlation
planes. Note in these figures that the correlation
peaks are still targely unchanged in shape and are now
displaced in the horizontal direction from that of the
autocorrelation in Fig. 3(b) proportional to the loga-
rithm of the scale change of the input. We note also
that the value of the correlation peak varies for a scale
change of the input as expected since a larger pattern
(containing more energy) results in more energy in the
output plane. The cross correlation of an unknown
input image [Fig. 4(e)] with the matched filter of the

e o

Fig. 4. Real-time laboratory scale invariant object recognition and
cross-correfation data:

reference: vh correlation of the coordinate transtormed input ot va);

ta) input object, 1307 scale change tfrom

terinput object, 705 scale change trom reference: (i correlation of

the coordinate transtormed input of t0): (e) input object different

from the reference object: (11 correlation of the coordinate trans
tormed input of (e

coordinate transformed reference yields negligible
output [Fig. 4(f)] as expected, since the coordinate
transformation is one-to-one and thus does not make
cross-correlation response larger.

IV. Conclusions

The use of an optical coordinate transform (CT)
system, employing a CGH and a lens, in series with a
conventional optical correlator has been demonstrated
in real time for in-plane deformation invariant pattern
recognition. The CT system is interfaced to the corre-
lator system using a LCTV and TV camera to allow the
system to process data in real time.

In our system, the CT chosen performed the polar-
Inr transform which vields scale and rotation invari-
ance. The CGH used to perform this transformation
was detailed with attention to the recording technique.
space bandwidth required, and effects of an r~ weight-
ing term. The scale and rotation invariant real-time
correlation performance of our svstem was experimen-
tally demonstrated. The results using the inexpensive
LCTV are promising, and the use of higher-resolution
LCTVsshould vield improved correlator performance
at modest expense.
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Computer generated hologram recording using a

laser printer

Andrew J. Lee and David P. Casasent

The use of a laser printer for recording various types of computer generated holograms is discussed. a

results are presented.

Computer generated holograms (CGHs) have a vari-
ety of uses in optical information processing.!¢ Many
CGH recording devices can be used,” ! but few are
inexpensive and easily available to the researcher first
hand. Recording with a Calcomp plotter and subse-
quent photographic reduction of the pattern is the
most accessible form of CGH recorder. However, it is
limited in its flexibility, resolution, and reproducibili-
ty, and it requires photographic reduction of large 20-
X 20-in.” patterns. The advent of laser printers and
their reduced costs makes them attractive CGH re-
corders. We emphasize the use of the Imagen 300
laser printer,!! although the same techniques apply to
other laser printers.

The Imagen 300 is commonly used to print letters
and other documents using word processing software.
In this mode, the word processor generates a file writ-
ten in imPRESS code. This file is fed to an image
processor (IP) within the Imagen printer which stores
and interprets this file and converts it to araster. This
raster format is necessary to control sequentially the
writing laser beam. The print engine within the Ima-
gen contains the laser and optics which perform the
printing of the information on paper as a high resolu-
tion binary pattern. The imPRESS commands typical-
ly used define English and Greek characters, fonts, and
symbols. Toemploy the device for CGHs, the user can
employ imPRESS to define his own fonts by defining
glyphs, tne basic cells used in halftone printing of grey-
scale imagery. The user can also employ imPRESS
commands that draw points, lines, and arcs and per-
form area shading. We now detail two procedures we
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have developed to use the Imagen printer fc
synthesis. We also quantify accuracy measur
taken on the printer.

There are a large variety of CGH encodin
niques possible to produce grey-scale and cc
value data with binary recording devices such
printers. To record a 2-D rectangular array
with different transmittance at each point, tl
array is specified, and halftone techniques (usi
defined glyphs or the shading command in im
are used to produce the desired transmittance
point. For spatial filtering and matched spatis
ing applications, other encoding techniques'
possible but follow from the above basic techni:
pictorial example of a halftone encoded ima,
duced by the Imagen printer is shown in Fi
demonstrate the results and concept. The ima
sists of 190 X 190 glvphs which encode 64 differe
levels.

For more general CGHs, the required patte
sists of a set of curves, each described by an e
and (for the case of a binary pattern) one must «
all the points satisfying each equation and prod
resultant plot of these curves. The imPRESS co:
DRAW-PATH draws a curve through a number of
A file of all these DRAW-PATH commands (one {
curve) and the absolute pixel locations of pc
each are then produced. This is referred tc
graphic imPREsS file. This file is then sent
Imagen printer ‘where the IP interprets the i
commands and produces a raster file which «
which pixels on the page should be turned on (
black). The print engine then produces the s
pattern. An example of such an output is sl
Fig. 2. This is a continuous phase binary sy
CGH that implements a polar-log coordinate t!
mation on a 2-D input image. This CGH is us:
necessary for space-variant scale and rotation
ant pattern recognition.!”

One issue in implementing these concepts
absolute pixel positions must be used rather t}




ial

Fig. 1. Grey scale image produced on the Imagen laser printer as an
example of a CGH with halftone grey level spatial transmittance

ventional units (inches) of distance. This issue arises,
since when one uses a CGH in an optical system, its
physical size must be calculated and specified, and the
CGH must be produced to exactly this size. Another
issue is that the imPRESS commands are written as hex
character pairs, and pixel locations are written as four
hex pairs. This introduces some difficulty in use and
debugging if the user is unfamiliar with hex represen-
tation and with the hex description of all imPRESS
commands (since to read an imPRESS file, all hex char-
acters must be converted to their decimal or command
equivalents). The first technique we use to generate
the graphic imPRESS file is to write FORTRAN subrou-
tines that set (x = 0, y = 0) at a given absolute pixel
position and then convert all {(x,y) pairs from distance
units to pixel values (by dividing by the 300-pixel/in.
resolution of the Imagen printer). The result is an
(x,y) sampling at 300 pixels/in. We have found this
technique to be the most accurate, although it is the
most difficult to use and debug. The second tech-
nique we use to generate the impPRESS file uses D1ss.
PLAM graphics software called from a simple FORTRAN
program. The points (x,y) to be connected are left in
inches (or any distance unit), or as pixel indices, and
are then connected via a series of CONNPT commands.
The software then converts these DISSPLA commands
into imPRESS commands and the (x,v) points into pixel
indices. This technique is much easier to use since the
user need not know all imPRESS commands or their hex
equivalents and how to convert from inches to pixel
indices to hex characters. However, each pixel on the
printed page is not separately controlled, and pixel
points are not always placed in an exact desired posi-
tion (due to sampling and interpolation deficiencies in
the DISspLA software).  DIssPLA also produces auto-
matic margins, thus eliminating many possible points
on the edge of the page and hence reducing the total
number of pixels one can record. We now quantify
many of these above remarks. These two techniques
and the Imagen system are shown in the block diagram
flow chart of Fig. 3.

The pixel size, overlap of pixels, and positional accu-

Fig. 2. Imagen laser printer produced continuous phase b
svithetic CGGH that achieves a polar-log coordinate tran
mation.

Fig. 3. Block diagram of the two CGH synthesis techniques
the Imagen laser printer.

racy of the printed output are now addressed.

300-pixel/in. resolution is misleading, since adja
pixels overlap to provide attractive continuous chs
ters. Measurements by usindicate that a pixel is (
X 0.175 mm- and that adjacent pixels overlap hori
tally and vertically by ~50% or 0.09 mm. Thus
center-to-center spacing of adjacent pixels is (
mm, and each pixel is 0.175 mm in size in one diz
sion. As a result, the sequence of three pixels a:
OFF. ON will not show a central OFF pixel. Thus
printer resolution is 150 nonoverlapping pixel
However, each pixel location can be specified ta
part in 300/in. There is a slight variation in the w
of pixels due to the varving density of the toner.

variation is quite small [(below several microns) a
random and could not be measured with our avai
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techniques, even after 20X magnification]. The abso-
lute positional reproducibility of points was tested by
writing alternate pixels and lines on the left and right
side of a page and on the top and bottom of a page. In
all cases, straight lines resulted that were aligned ex-
actly to the desired pixel position. Thus the Imagen
printer used with the imPRESS commands is reproduc-
ible within the specified pixel resolution and within
excellent measurement accuracy limitations. To cali-
brate distances to pixels and to quantify the absolute
positional accuracy, the outline of a square 1200 X 1200
pixels in size was recorded using the imPRESS com-
mands. The two dimensions of the resultant plot were
measured to be equal within 0.5 mm (0.02 in.) or 3
pixels. Thus the absolute positioning accuracy of the
printer is 3/1200 or 0.25% over a distance of 4 in. Itis
important to note that the spatial size of the square
CGH pattern was precise (i.e., 4 in. within 0.02 in.,
corresponding to 1200 pixels) when written directly by
the imPRESS commands. When the same 4- X 4-in.
square (1200 X 1200 pixels) was written using DISSPLA
software to generate the imPRESS file, the size of the
square produced was 3.76 in. This is due to sampling
and interpolation effects in the DISSPLA software
(whose source code is not available). This represents
no major problem, since one simply scales the desired
dimensions by 4/3.76 to obtain an exact pattern size.
The DIssPLA software is still not capable of controlling
each pixel on the final printed page and in the final
impPREssfile. Todemonstrate this, we wrote a pattern
of two ON pixels separated by 1/300 in., 2/300 in., etc.
and found the imPRESS file generated to have scaling
errors in the number of OFF pixels. Thus, for best
absolute accuracy with separate direct control of each
image pixel, the imPRESS software is recommended
directly. However, for most CGHs with moderate res-
olution, the more user friendly DISSPLA software syn-
thesis technique will suffice.

The final topic of concern is the number of points
that one canrecord. The IP within the Imagen printer
produces the necessary raster image from the imPRESS
file. In conventional text writing, the imPRESS com-
mands used do not involve lines that extend more than
afraction of aninch. Thus the printer engine can (and
does) start printing before an entire page raster file has
been produced in the IP. In recording various CGHs,
the last command in the imPRESS file can involve
points separated by a considerable distance (in the
extreme case, a command to draw a line from the top to
the bottom of the page). Thus, in CGH synthesis, the
entire image raster file must be complete before print-
ing begins. We achieve this with a special software
command that stops the print engine until this condi-
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tion is satisfied. For conventional text recordir
command is not used, since it considerably redu
printing speed possible. The standard IP h
kbytes of memory for storage and processing
have added an additional several megabytes of |
ry to this to accommodate high resolution lar
CGH synthesis. For an 8 X 10 = 80-in? printin
the printer can support 80 (300)° = 7.2-M pixel
CGHs. The need for alarge memory is thus img
in CGH synthesis.

CGHs are increasing in use and popularity
ease with which they can be produced on inexg
and generally available laser printers should
CGH techniques to more researchers.
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Error-correction coding in an associative processor

Suzanne Liebowitz and David Casasent

A technique for encoding binary outputs from optical fiiters or matrix memories used in an assoc
processor for object recognition is discussed. Binary coded output vectors (rather than unit vectors) are
and considerably improve storage capacity. The output codes or matrix memories are chosen from ¢
theory to enable error correction and detection. The error classification rate for the coded sche
compared to the noncoded version for different amounts of noise in the input and output planes. Discu
of extensions to more classes, more errors, and multilevel coding are included.

l. Introduction

We describe a technique for using conventional cod-
ing theory to enhance the capability of optical correla-
tors for object recognition and orientation determina-
tion. Three types of advanced filter that have been
suggested for use in an optical correlator are projection
filters,! correlation filters,? and peak-to-sidelobe ratio
(PSR) filters.> Section II reviews the synthesis of
these filters. Here, we emphasize the use of projection
filters and especially their ability to encode multiple-
class information. Several methods for implementing
associative memories have been detailed in the litera-
ture.*!3 Some of these methods have been proposed
for optical implementation.”* In this work, we syn-
thesize the associative memory from projection filters.
A recent suggested method of optical associative
memory synthesis used projection filters to form a
matrix with each filter as a column and optically com-
puted the vector inner products required in parallel.!?
The output vector from this memory is a code that
describes the input vector. In our work, the input
vector is an object image-plane representation, and the
output code indicates the class of the object. We will
use the term class loosely, since each input image can
either be a different object or a different orientation of
one object (or a combination of both). Each bit in the
output code corresponds to the output of one of several
filters (matrix columns). This associative memory
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Electrical & Computer Engineering, Pittsburgh. Pennsylvania
15213,
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formulation is based on a multifilter classific:
technique. In Sec. II we review its formulation
realization and note its improved storage capacit;

In this paper we further enhance this metho
designing the filters and the output codes to er
error detection and correction. For our work, wi
binary coding theory since it allows for easier co
tions/encodings. Therefore, the outputs of the fi
can only be set to 0 or 1 (or values representing 0 o1
for example, a 0 output should be avoided). Thee
correcting technique used in our work is present
Sec. III. Error-correcting codes are advantageo
situations where the probability of a bit transitior
a binary code, this is the probability that a t
incorrect) is small. In Sec. IV we discuss the 1
model used in our work and the theoretical limita
of the coding techniques. In Sec. V we presen:
results of simulations tested on both uncoded
coded outputs with a data base consisting of le
from the alphabet. By limiting the scheme to a bi
code, we lose the ability to handle more classes
fewer filters as is possible with multilevel coding
Sec. VI we will discuss how multilevel coding ca
used to enhance the capability of the system to hs
more classes with fewer filters and other selectet
vanced considerations.

Il. Filter Synthesis and Associative Memory Formul

The conventional heteroassociative memory fo
lation uses unit output vectors with the location «
denoting the recollection vector or class assoc
with the input data. Various associative memory
thesis techniques and realization architectures
been described.*"!* We consider an efficient, |
capacity multifilter associative memory. A si
conventional optical associative processor is shov
Fig. 1. It has an input key vector x at P,, whi
multiplied by the associative memory matrix M

15 March 1987 / Vol. 26, No. 6 / APPLIED OPTICS
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to give an output recollection vectory = M xat P;. In
our associative memory synthesis, we use k = F filters
h;, as the columns of M. The P; output vector thus has
F elements, each of which is the vector inner product of
the x input and the various hy filters. For the case of F
= 2 filters (h; and h;) at P> with binary thresholded Py
outputs, the four possible F = 2-bit output vectors are
noted in Table I. Each of these can be made to corre-
spond to a different object class by the appropriate
output binary encoding. For the general case of F
filters (F columns in the matrix at P.,), the F-bit output
can accommodate 2 classes of objects (it is often pref-
erable to allow 2F — 1 output classes to avoid the all-
zero output vector, which can also occur with no P,
input). The associative memory matrix M need only
be M X F,where M is the dimension of the input vector.
Conventional associative memories require far larger
matrix sizes and would provide at most recognition of
F rather than 2F output classes (while also requiring F
<« M for most conventional associative memory formu-
lations).

Synthesis of this matrix (and its associated filter
vectors or columns) has been well-documented'*1¥
and is thus only briefly highlighted here. We begin
with several images in each of several classes and form
their vector inner product matrix V. WetheninvertV
and multiply it by a matrix P whose rows are the
desired F-digit output y; recollection vector codes for
each input key vector x,. The rows of the resultant
matrix A = V~!P specify each filter function hy as a
linear eombination of all the original key vectors. The
F filters hy, are then used as the columns of the matrix
M at P, of Fig. 1 and the F-digit y output at P; will be
the binary code for the 2F different object classes de-
sired and specified by the P matrix. The more general
version of this associative memory synthesis algorithm
uses F filters with L different levels allowed in each of
the different F output P; digits. This allows us to
represent LF object classes with an associative memory
with only F column vectors. We will restrict attention
here to the case of binary output vectors (because the
error-correcting technigues we will be describing will
be much simpler for this case). In this paper, we
consider techniques to improve the performance of
such associative processors by using coding theory to
allow the detection and correction of digit errors in the
output y vector. We will also restrict attention to

Table I. Two-Filter Output

Class h, h.

0 0
(4} 1
1 1
{ 4

- i —
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° ERROR v et Fig. 1. Optical parallel r
CORRECTION| __,, oc?ées‘; tion of multifilter coding (as
er tive memory scheme)

projection filters (with extensions to correlatior
other advanced filters? following directly). Whe
key vectors are chosen properly (as statistically
sentative of the data),? this associative processor
forms quite well and the output vector denote:
reference yy recollection vector most closely assoc
with the x test vector. The matrix can also be sy
sized to output a reference key vector x; most cl
associated with a rartial or noisy input key vector
is an autoassociative memory matrix). In this p
we will consider only a heteroassociative memory
trix, although an autoassociative memory matris
mulation as well as the cascade of an autoassoci
and a heteroassociative memory matrix is possible¢
vields excellent results. Our main attention wi
given to providing error-correction ability tc this.
ciative processor in addition to the initial error-co
tion ability the system possesses as an associ
memory and/or nearest-neighbor processor. Suc
ditional error correction is necessary when parti:
put vectors are present, when the dynamic range ¢
optical processor implementing the memory is Io
when input or output noise is large. The basic e
correction techniques advanced should be suitabi
most associative processor synthesis algorithms
architectural realizations.

. Error-Correction Coding

The basic idea of coding theory is to represent a
output by n > k bits in order to allow for error co
tion. A simple example of a binary coding techt
which adds redundant bits is the parity bit schen
which one extra bit is added to a k-bit represents
The extra bit indicates if the number of ones 1!
code is odd or even. This technique helps dete:
rors but cannot correct them. For our present ap)
tions, it is desirable to use a coding scheme tha
allow for correction. The choice of coding schen
use for this problem is exhaustive. Many (& +
codes exist that can allow recognition of 2% object:s
various abilities to detect and correct errors. A v:
of decoding schemes also exist. The group of cod
chose to investigate is the linear block codes.
have the ability to correct errors. The more bit ¢
that a code is able to correct, the more redundan
one needs in the representation. Linear block c«
are described in terms of generator matrices G, p
check matrices H", and a syndrome vectors. An
linear code uses n bits to represent a k-bit code
our binary case) 2" different objects where n > &

To demonstrate the concept, we specifically ch
use a (7,4) Hamming code. A Hamming code is
able because it involves a matrix-vector multipli
for decoding (and this operation can be implem
digitally or optically using a nonlinearity su
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Table ll. Decoding Table for the (n,k) = (7,4) Hamming Code

Syvndrome Coset Leader
[] Bit in error e
000 0 0000000
100 1 1000000
010 2 0100000
001 3 G010000
110 4 0001000
011 3 0000100
111 6 0000010
101 7 0000001

thresholding). A (7,4) Hamming code uses 7 bits to
encode 4-bit data. It cen thus accommodate 2* = 16
different inputs or classes, and the code has 7 — 4 = 3
redundant bits. This particular code can detect and
correct 1-bit error in the output. We now provide a
brief review of conventional Hamming code theory.!
The n-bit code is derived by multiplying each possible
k-bit message by a B X n matrix G known as the
generator matrix. The (7,4) Hamming code is derived
by multiplying each 4-bit message u (i.e., 0000, 0001,
...or1111) by

11 01 00 @

0 1 1 0 1 0 0

In coding theory, vectors are row vectors (u” is a
column vector), a matrix—vector multiplication is writ-
ten as u G, and all multiplications are modulo 2. We
will retain this notation and usage. For the message u
= [1101], the n-bit code word would be u G =
[0001101]. For example, the first element of u G is

[rrofj(ron]’ =1 +0+0+1),=2,=0. (2)

The G matrix can be written as an augmented matrix G
= [PI], where Lis a k X k identity matrix (here k = 4)
andPisak X (n — k) =4 X 3matrix with 0 and 1 values
chosen for the specific code.

To decode a received message r (of n bits) to produce
the original k-bit message, we multiply r by a parity-
check matrix HT, where H = [I,_; P7]. In our exam-
ple,lisn—k=T7-4origa3X 3idouuiiy o 1vrim, His2X
7, and H7 is 7 X 3. The product r H7 yields a syn-
drome vector of dimension n — k = 3 for our example.
Note that this ¥ H” multiplication is also modulo 2.
The syndrome vector tells us if an error has occurred in
transmission and which bit is in error. If s = O (the
zero vector), no error has occurred. A nonzero vectors
indicates the presence of an error as well as which of
the n bits in the received message is in error. Table II
shows the eight possible 3-bit syndrome vectors for our
(n,k) = (7,4) code example, the associated bit that is in
error, and an n = 7-bit unit vector e called a coset
leader. Thelocation of the 1 in e indicates which bitin
the received message is in error. The corrected re-
ceived code is obtained by adding e to r modulo 2 (with
no carries). This correction operation can be per-
formed by a bit-by-bit exclusive-OR of e with r.

The relationship between e and s is usually imple-
mented i a lookup table. We propose to achieve this

x
<

ITIT]]

y
P1 P2 Pz
Fig. 2. General block diagram of an error-correcting associa’
processor.

with an associative memory to determine the s;
drome-coset leader association. Since each syndro
vector 8; corresponds to a coset leader e;, we will p
duce an 8; for each input e; by a matrix-vector multij
cation by a matrix Y that satisfies 8,Y = e; for all (s;.
pairs. If we place each 8; in the ith row of a matri:
and each e; in the ith row of a matrix E, then Y
specified by

SY = E.

Equation (3) can be solved in several ways*: inalea
squares sense as Y = (STS)~!E, or iteratively, or fr
the outer-product approximation (assuming ortho
nal vectors s; such that S~! = 8T)

Y=NsTe.
s
,

Figure 2 shows the general block diagram of ¢
proposed error-correcting associative processor. T
n = 7-bit Hamming-coded received vector r is outg
from the first associative processor (Fig. 1 with the
matrix synthesized using projection filters). It is th
decoded by multiplication with the parity-check n
trix H”. The n — k = 3-bit syndrome vector s p:
duced is then converted to the coset leader vector e
the second associative processor shown (which has 1
same form as Fig. 1 with a different P, matrix). T
presence of a bit error and which bit (if any) is in en:
is determined by e. The final box then produces 1
eorrecied n-bit u code. The veclor operatious p
formed are modulo-2 (no carries) and, thus, the sej
rate operations cannot be combined conventiona
into one matrix-vector processor. However, they ¢
be combined into one table lookup associative proc
sor (Fig. 2). However, the use of additional nonline
ity appears to be beneficial in such processors, and
employ the system in the form shown in Fig. 2.
emphasize the nonlinear nature of the various ope
tions, we include nonlinear (NL) unitsin Fig. 1. Th
nonlinear units also include thresholding operation:
reduce noise effects and to improve performance.

Let us now discuss how s and e provide error corr
tion. Three situations can occur for the s output
any Hamming code. We discuss these for our case
an (n,k) = (7,4) code:

(1) The received vector is one of the sixteen allo
ble n = 7-bit codes uG for the & = 4-bit words u.
this case, s and e will be zero. The received code w
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r will be correct and the final n-bit word u will be
correct.

(2) The received vector r has a 1-bit error. In this
case, s will be one of the 2"~* — 1 = 7 nonzero syndrome
vectors and e will denote which bit is in error (see Table
II). Inthis case, e and r can always correct the error to
yield the correct u.

(3) The received vector r has more than 1-bit error.
In this case, the vector will be (incorrectly) corrected to
one of the sixteen Hamming code words. This is be-
cause the Hamming code is designed such that each of
the sixteen 7-bit received codes has seven 7-bit re-
ceived code words that have 1 bit in error. The seven
codes which are 1-bit different are unique to each of
the sixteen code words. Therefore, the 16 X 7 = 112
seven-bit codes will always be corrected to one of the
sixteen error-free Hamming code words. Including
the original sixteen Hamming code words, 112 + 16 =
128 (all 27) possibilities for 7-bit outputs are accounted
for.

Further details on Hamming codes and other linear
block codes are provided in many texts.!*-17 Other
coding schemes can allow the presence of more than 1-
bit error to be detected and, theretore, provide a no
decision output state possibility.

IV.  Output Probability of Error and Noise Model

Coding techniques perform well if the probability p
of a bit error is small. In this section we derive the
amount of noise that the coding scheme can tolerate
and still be effective. In our specific Hamming code
example, the probability of error p for any hit in the
noncoded 4-bit representation is

Ple)y=1—(1~p\ 4)

The probability of error for 7-bit Hamming code is the
probability that two or more bit errors occur or

Pie)y=1~(1-p) —ipil — p). (5)

which is 1 minus the probability that none or 1-bit
errors occur. If p is small, then we can use the series
expansion (1 — x)" to approximate (4) and (5) by

P(e)=1—-(1—4p) = 4p, (6)

Pye) =1—(1-17p+ 21p?) — Tp(1 — 6p) = 21p°.
(7N

The approximation used in (6) and (7) holds if P,(e) >
Ps(e), i.e.,if

p<4/21 orp <0.2. 8

Therefore, for small p, Eq. (6) is greater than Eq. (7)
and we expect an advantage in using the coding meth-
ods to correct errors. If p is large (i.e., if the noise is
large), coding may not be beneficial.

We now derive a first-order estimate of the amount
of noise our system can tolerate and still provide error-
correction ability. We model the noise fed to the
output of the system as a Gaussian zero-mean variable
n. The noise n is generated and added to the output ¢

1002 APPLIED OPTICS / Vol. 26, No. 6 / 15 March 1987

of the filter to produce ¢/ = n + c¢. This is tl
thresholded at +0.5 and the pixels or elements of
received signal become 0 if ¢’ < 0.5 and 1 otherw
This is the output r of our noisy system. The varial
o2 of the additive noise is related to p as we now det
From (8), we require p < 0.2 to satisfy our approxir
tions in (8) and (7). We assume that the probabil
that anybitisal(ora0)is0.5. Therefore, if an out]
element of the noiseless system is 1, it will become 0
< —0.5; similarly, if an output element of the noisel
system is 0, it will become 1 if n > 0.5. For Gauss
noise, the probability of a bit transition error is tht

p=0.5(1/2m)1 f expl—x-/2a°)dx

i-

0.5 (/200 ’ expt—x*/2a"1dx.

Jinh

We denote the Gaussian distribution as

<;<x)=u/zml-‘jr exp(—t2/2)dt. |
and note that G(—x) =1 — G(x). Using this symmet
property, Eq. (9) becomes

p=1=GW0.5/a). {
For this to be <0.2, we require G(0.5/q) > 0.8 or
a < 0.6 or ¢” <0.36. (

Therefore, we expect that when the input noise ha
variance o> < 0.36, we will obtain better results w
error-correcting coding methods. In Sec. V we sh
the results obtained for several values of ¢°.

V. Simulation Results

The training set or key vector for our projecti
filters consisted of 16 images of letters (capitals A-
and small letters a—h) from the New York Times fo
These 64 X 64 pixel images are shown in Fig. 3. T
letter occupies ~20 X 20 pixels of the entire ima;
We calculated F = 4 filters digitally off-line using t
algorithm in Sec. II, with each filter being of dimensi
642 and a linear combination of all 2k = 2F = 24 =16 k
vector test characters. These four filters were used
the columns of the 642 X 4 matrix at Psof Fig. 1. T
four vector inner product outputs at P of Fig. 4 rep:
sent the n = 4-bit coded vector u (before error-corre
tion encoding) that denotes the object class (the ing
letter and if it is a capital or lowercase letter). T
sixteen coded vectors u and the letters to which th
correspond are noted in Table III. These also rep:
sent the actual P, output obtained from Fig. 1 (
simulation) for'the case of F = 4 filters and L =
output levels.

We then synthesized a second associative process
matrix with error correcting using the (n,k) = (7
Hamming code. The associative matrix now consist
of n = 7 filters of 642 elements each as the colur
vectors in the 642 X 7 matrixat P;of Fig. 1. Eachoft
F = n = 7 filters was again a linear function of
sixteen original key vectors and these filters were c




Table lil. Nonerror-Correcting Output with Tralning Set (No Noise), F =

4L=2
Letter Code word Letter Code word
A Q000 a 1000
B 0001 b 1001
C 0010 ¢ 1010
D [UN] d 1011
E 0100 e 1100
F 0]0] f 1101
G Q110 8 1110
H 0111 h 1111

culated by a straightforward extension of the method
outlined in Sec. II. The n = 7 -bit output associated
code words (the chosen projection values used in the
algorithm) for the sixteen key vectors are given in
Table IV. There are also the noiseless P; outputs
obtained from Fig. 1.

In Table V we present a summary of our results when
noise was added to the output vector from the associa-
tive processor. We varied o2 in order to determine the
noise level for which the error-correcting coding
scheme is advantageous, and to determine the im-
provement it provided over a nonerror-correcting
code. Foreach value of 62, Table V gives the percent of
the sixteen key vector images correctly classified for

Fig. 3. 64 X 64 pixel training

or key vector. Input images {1

The New York Times font te
image is 64 X 64 pixels).

Table IV. Reference Key Vector Images and Associated Output €
Words from the (7,4) H ing Coded A lative Pr with F
= 2 and No Noise

Letter Code word Letter Code wor
A 0000000 a 1010001

B 1101000 b 0111001
¢ 0110100 « 1100101
D 1011100 d 0001101
E 1110010 ¢ 0100011

- 0011010 f 1001011

« 1000110 g 0010111
H 0101110 h 1111111

Table V. Pertormance of 4-Bit vs 7-bit Hamming Code Assocla
Processors for Various Levels of the Noise Varlance +2 (the Total N
of images is 16)

No error correction Number

4-bit code Hamming code corrected er

e percent correct percent correct  in Hamming

Naoise (number of errors) (number of errors) Processc
O.15 hI SRR 1005« B
0,20 0 (8) B1% 9
025 HI% (R) 62% (6) 3
0,40 A8% (1 AT 4
0.0 R} 4% 6
.60 BIMES] 31t A

to Fig. 4. Noisy A with - varied.
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the 4-bit and 7-bit error-correcting Hamming code
with the number of errors in parenthesis. Note that
any error in one of the 4-bit outputs will be an error and
that outputs with two or more bit errors will be errors
for the Hamming code associative processor. The last
column gives the number of errors (out of a maximum
of 16) corrected in the 7-bit error-correcting processor.

From the results in Table V, the error-correcting
coding provided better results for values of ¢ < 0.5.
However, the results are significantly better for ¢2 <
0.4 (classification is 81% for o2 = 0.2 and 100% for ¢* =
0.15) and only 6% better than the 4-bit scheme for ¢2 =
0.5. Thus for large noise levels, the improvement ob-
tained by error-correcting encoding is less significant
and not necessarily worth the added memory storage
and calculations. Significantly better performance
occurs for lower noise levels in agreement with the
theory in Sec. IV. In Table VI we list the 4- and 7-bit
outputs obtained at P; of Fig. 1 for the case of noise
with 67 = 0.2. In the output from the 4-bit projection
filter associative processor, an * indicates an error. In
the output from the 7-bit Hamming code scheme, an *
indicates an uncorrectable error, i.e., 2 or more bits in
error, and ** indicates a correctable error.

In the previous noise tests, the noise was added
directly to the output recollection vector (since for this
case we could obtain a theoretical performance esti-
mate). To determine the effect of noise in the input
image on the probability of an incorrect bit in the
output plane, we require simulations. There is no
method to directly calculate this relationship mathe-
matically since each image and noise representation
will behave differently. To estimate the amount of
input plane noise for which the error-correcting coded
output will provide a higher classification rate than the
nonerror-correcting coded output, we varied the
amount of noise (measured by ¢2) added to the input
training images. We could then approximate the
probability p of an incorrect bit by the number of
incorrect bits in the output divided by the total num-
ber of bits. We use ten realizations of the noise for
each ¢ value to obtain better statistics. Zero-mean
Gaussian noise (with a specified ¢2) is added to each
pixel in the image and the pixel is rethresholded at 0.5
toobtain the noisy binary input image. Figure 4 shows
sample versions of the letter A with varying degrees of
noise. Notice that the additive zero-mean noise clut-
ters the background as well as drops out data from the
letter.

We performed ten runs for each o value for all
sixteen original key image vectors for the 4-bit and 7-
bit output coded associative processor. For each ¢°
value, there are sixteen images, with 4 and 7 output bits
from the processor and ten runs. The total number of
bits considered was (10 runs)*(4 + 7 bits)* (16 images)
= 1760. From the number of bit errors out of the total
of 1760, we estimate p for the different o> values. The
results are shown in column 2 of Table VII. For input
noise variance of 0.4-1.0, the estimated value of p
ranges from 0.02t00.13. Figure 4 shows how poor the
input SNR is even with ¢ = 0.6. The percentage of
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Table VI. Output from 0? = 0.2 Output Noise Tests

4-Bit code (7.4) Hamming Corrected
Letter output code output Hamming code

A 0010* 0000001** 0000000
B 00U1 0111000*
C 0010 0110110** 0110100
D 0011 1011001*
E 1100* 1110010
F 0001* 0001011*
« {011* 1010110** 1000110
H 0111 0101100** 0101110
a 0000* 1010011+~ 1010001
b 1001 1111001** 0111001
¢ 1000* 1101101** 1100101
d 1001 (001101
e 1100 0000011** 0100011
f 1100* 1001011
g 1110 0010011
h 1111 0111111** 1111111

Note: For the 4-bit code result the * indicates error; for the 7-b
(7.4) Hamming code result the * indicates uncorrectable error; the *
indicates correctable error.

Table ViI. Estimated Probability p of an Output BR Transition Error for
input Images with Various Noise ¢?

Noise Bit error
variance probability 4-Bit output Hamming code

a? D tnumber of errors) (number of errors)
0.4 0.02 89% (18) 93% (1

0.5 0.04 B1% (34) 95% (8)

0.6 0.08 T34 917 (15)

0.7 010 65% (45) B5% (20)

0.8 0.11 63 (H9) B0 (32)

1.0 0.13 545 (T3) 69 (50

1.3 0.18 437 (92) 63% (5N

Note: Each p estimate is based on ten runs. The percentage of tt
total 160 images for each a- value correctly classified for the 4-b
Hamming code schemes are listed (with the number or images mi:
classified given in parenthesis).

the 160 images (16 characters X 10 runs) per ¢2 valt
classified correctly and the number of errors are ir
cluded in parenthesis for the two coding schemes. F¢
the (7,4) Hamming code, the percentage correctly cla:
sified includes those output codes which originally ha
1-bit error which were corrected by the postprocessin

In all cases, the error-correcting coding provide
considerably improved classification rates and perfo
mance compared to the four-filter (or 4-bit) outpu
As the input noise variance increases, the classificatic
rate is lowered for both the error-correcting and no:
correcting associative processors. For ¢° = 1.3, v
estimate p at 0.18, which is close to the theoretical lim
(of 0.2) estimaied in Sec. IV. In this case, the classii
cation rate for the Hamming code processor is on
63%; however, it is still a significant improvement ov
the 43% classification rate for the four-filter outpt
As o? is increased further, we find the classificatic
rate for both the error-correcting and nonerror-co
recting processors to be too small to be useful.
seen, a considerable amount of input noise can !
tolerated and the error-correcting associative proce
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sor will still perform well. In Sec. VI we discuss alter-
native more advanced codes which are able to correct
more bit errors.

Vi. Advanced Considerations

From the results presented in the previous section, it
is evident that coding schemes can significantly im-
prove classification results in the presence of noise in
the input and output. Two more issues we will consid-
er here are (1) the handling of more classes and (2) the
correction of more bit errors. We consider binary
output vectors initially. Inthe nonerror-correcting F-
filter case, we can increase the number of objects to be
recognized by increasing F = k, the number of filters
and bits in the output code. Inan F-filter scheme with
F = 6, we can handle up to 2¢ different objects. This
would be sufficient to classify the entire alphabet
(both lower case and uppercase) along with the ten
numeric characters 0-9. If we wanted to extend this to
an error-correcting linear block coding scheme, we
would need an (n,k) code with & at least equal to 6. If
we also wish to implement a coding scheme that is able
to correct more than 1-bit error, we will need to synthe-
size and store more filters (for the extra redundant
bits). Since a Hamming code can only correct 1-bit
error, we must use other available coding schemes.
Binary Boce, Chaudhuri, and Hocquenghem (BCH)
codes are one viable alternative.'™!® For example,
there exists a (15,7) BCH code that could handle 128
classes and correct 2-bit errors, but fifteen projection
filters must be used. With thirty-one projection fil-
ters we could implement a (31,6) code that could han-
dle the alphabet and correct up to 7-bit errors.

BCH codes require complicated decoding tech-
niques. We do not provide all the details, but rather
will briefly outline the procedure in order to compare
the difficulty. With BCH codes, the syndrome s is still
calculated by a matrix-vector multiplication such as
rH?,butsis nowal X 2t vector (where ¢ is the number
of bit errors we desire the code to correct). The ele-
ments s; of 8 will now be the sum of powers of a
parameter q, i.e.,

§]=u.'+n’+,,,u.
2y 2 2
s.:=a 'taTt
2ty 2. 200 .
s, = +a T+ T {13

The coset leader demodulated vector for this case has
as its elements j, (k = 1 to v). The values of the ji
indicate the locations of the errors in the original in-
put. To decode these output BCH s codes is more
difficult but can be realized by an iterative algorithm!
that solves Eq. (13) for o, v, and thenall j.. Sincev <t,
there are multiple solutions to the set of equations in
{13), and the solution that yields an error pattern with
the smallest number of errors is the correct solution.
Furthermore, other codes exist which can correct a
number of errors (t) and can also detect if more than ¢
errors have occurred. With such a code, a vector out-

put can be classified as undecided, and, if desire
input can be reprocessed until no uncorrectable «
occur.

All of our previous examples used binary codix
preferable coding scheme would employ multiles
ters with multilevel output coding vectors. W
levels and k bits, the output could handle L* difi
objects instead of only 2* as with a binary code.
would significantly enhance the ability of the syst
handle more information with fewer filters. One
multilevel code is a nonbinary version of the
code, the Reed-Solomon code.?V The decoding fc
more complicated than for the BCH code, but it ¢
used.

We now consider methods to reduce the size
associative processor matrix (at P» of Fig. 1).
optical implementation, the number of filters and
dimensionality are restricted by the size of the s
light modulator on which the matrix is recorded
Using a liquid crystal TV (with 127 X 143 pixels)
we could handle 127 filters, but each can only b
long. If the input key vectors are lexicographic i
plane vectors, the input image size is quite lii
{~10 X 14 pixels). By representing the input
feature vector instead of the full image, we can si
cantly reduce the dimensionality, achieve shift-i1
ance and some degree of automatic distortion i1
ance. The features chosen are dependent on the
of input data and the properties required of the s3
(such as shift, rotation, or translation invari:
Typical feature spaces are Hough transforms, F¢
transform coefficients, chord distributions, radiz
angular moments, and Fourier-Mellin coefficier

The concepts presented here can also be extenc
encoding the outputs of several correlation fil
Correlation filters are implemented and used
differently from the projection filters. A full co
tion of the filters with the input image is perfa
(not just an inner product). The output correl
planes are then searched for peak values above a
fied threshold. These specify the 1 or 0 eler
(peak or no peak) in the output code. The restric
on the number of bits in the code (or the numi
filters) depend on the number of correlations th:
be performed in parallel or rapidly in series (recal
a full correlation must be performed and the
correlation plane searched to obtain 1 bit of the o
code). This is possibly optically.>

Vii. Summary and Conciusions

We have discussed how to use coding theory t
rect output errors from an optical associative pi
sor. The associative processor we use employs p
tion filters for more efficient encoding of inform
Specifically we have demonstrated the ability to1
sent 2* (rather than just &) object classes with a
output recollection vector and a k X m assoc
matrix, where m is the number of elements in the
key vector. The output code words are select
enable correction of bit transition errors resulting

15 March 1987 / Vol. 26, No. 6 / APPLIED OPTICS
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either output or input noise. We tested the ability of
the coding scheme to correct errors for various
amounts of noise in the output and input, and we
showed that for small bit transition error probabilities
(p < 0.2), the coding scheme improved results. The
example chosen was a sixteen-class binary coding
problem using a (7,4) Hamming code with the ability to
correct a 1-bit error in the output. Extentions to
larger class problems and to increased error-correcting
capability were discussed.

We acknowledge the support of this research by
General Dynamics, the Defense Advanced Research
Projects Agency, and the Air Force Office of Scientific
Research. We would also like to thank Ed Baranoski
for many fruitful discussions.
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Optical associative processor for general linear

transformations

Raghuram Krishnapuram and David Casasent

Anew techimgue tor the realization of general hinear transtormat FO 1 dssOCTALIN e Nores -

An oplcat architeetiure tor s mpiementation s also presentec, A Tow dever jeabare space prog

thix architectiure is proposed. The processor is capable of recoginzang ana loca g oisecis oo

and Uses certain near trans=tornuatioss i the teature Space 1o disnrtion ey - atiet,

. iIntroduction

Linear transformations have been used extensively
in the literature to produce feature spaces for pattern
recognition. Transtorms such as the Fourier trans-
form.” Mellin transform.” and Hough transtorm’ pro-
vide feature spaces for pattern recognition. These
transformed spaces generally make object detection
and identification easier by emphasizing or bringing
out certain features of the input image. These trans-
forms can also be made invariant to certain types of
distortion of the object. They also achieve a certain
amount of dimensionality reduction so that the num-
be- of samples required to represent the input image
for the purposes of pattern recognition is small. In
this paper, we consider the Hough transtform tor spe-
cific detailed realization. although the fundamental
mapping. transformation. and associative processor
techniques are quite general.

There are many reasons for considering the Hough
transform (HT). It is one such feature space which
facilitates the detection of a particular shape.! It is
very attractive because it can be implemented optical-
Ivinreal time and because it is a low-level feature space
and is thus quite unique for parallel optical realization.
The HT has been defined in a varietv of wavs.' " [t was
originally formulated for the detection of straight lines
in the input image. It has also been generalized for the
detection of other analytical curves (e.g.. ellipses.” pa-
raholas ) and even arbitrarv shapes.”

All these transformations are linear. and a majority
of the HT ones are space-invariant- i.e.. the shape of

The authors are with Carnegre Mellon T niversity, Department ot
Flectrieal Computer Engineering, Pitt<buareh Penosclvamm 100138

Recened 7 February 1986
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the curve to which each input point waps s
regardiess ol the position of the input. T hese
ties are invaluable. especialiv tor opticai jing
tions of these iranstorimns. as wiil be shown o
also show how the <tralght-line Hough v
ve used very etfectively tor paitern recogniii
straignt-iine Hough space hdas several advant
can be very easily computed opicaliyv.” ' ad
imensionality reduction, and canb be made inv
input object distortions by lile use of cecta
transformaiions.” 1l can alsu be dsed for e
tioni oi cdrved vbjects.” Digital methods o
the hnear transformations fequired ol e
slow ana compulaiionaiy eapeasive.  Gpii
ods 1o achieve the straighi-iine H'T ¢xist anc
be more practical and ieal-time.  In this p
advance an alternative method to compute the
other linear transformations optically using
clative memory architecture.  This approa
tremely general. It can be used to acnieve ge:
H'T's and. in general. any iinear transformatio
transformation is also shitt-invariant, it can '
mented in a very simpie and elegant mant
acoustooptic cells as we wiil detail later.
provide a low-level optical associaiive proce
tem based on the associative memaory (AM
ture. The svstem produces the siraight-line
feature space for recognmition and location ot «
arbitrary shapes. T'his is achieved vy the use
transtormations, as we will describe.

Section i describes our new associative
approach to a general linear transtormatior
algorithm to ootain the requirea memory mat:
tion HI discusses an associative processor tor
ot several linear Hough space transtorman
attention to their Use or object recognition
shift-invariant propert.  Secuon iV advance
new acoustooptic (AG) architectures tor th
realization of the proposed asseclaltive meine
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tion IV describes a proposed low-level optical associa-
tive processor system for object recognition. Section
V1 gives our summary and conclusions.

Il. AM Realization of Linear Transformations

Heteroassociative memories map each vector in the
input to a corresponding vector in the output, where
the input and output vectors need not be of the same
dimension. This fact can be used to achieve linear
transformations on 1-D or 2-O inputs, where each
point in the input is mapped to a corresponding point
(or curve, a set of points) in the output.

A. Vector Representation of Mappings

The mappings to be described apply to any data
representation (e.g., feature or symbolic space) but are
best described for an input image space. Let N be the
total number of pixels in an input image. The 2-D
input image can be lexicographically represented by a
vector with N components, where each component
represents a pixel in the input image. The input vec-
tor x, corresponding to a particular pixel in the input
image will have all zeros in it except in the ith position
where it will have a 1. {For the time being, we assume
that the input image is binary, but this assumption is
not required, as we see later.) Similarly, the output
associated with each pixel is represented by a vector y;
of size M, where M is the total number of pixels in the
output. Each output vector will have nonzero values
only in those positions that correspond to the set of
pixels or curve to which the input pixel maps. The size
of the output space can be compressed to a variable
resolution, and thus M < N is possible and generally M
<N.

B. Construction of the Heteroassociative Memory

Let X be a matrix with the N input vectors x,,
X.,....Xy as its columns and let Y be the matrix with
the N corresponding output vectors y,, y... ..,y asits
columns. We consider the pseudoinverse associative
memory!'! matrix M with the N input-output vecter
pairs as the key and recollection vectors. In this case,

Y = MX. (h

where

M=YX". (
and X' is the pseudoinverse of X given by
X =X Xv XY (i

Without loss of generality, we can arder the input
vectors so that Xisan N X Nidentitv matrix  In this
vase, X and X* are identity matrices and. therefore.

MY [y

i.e.. M iz simply the matrix of output vectors
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C. Associative Memory Output for a General Ir
x

The associative memory described above !
input vector x to an output vector v = |
reference (key) input vectors satisfy the pro

=6,

where x,(j) denotes the jth component of the
ence vector x,, and

The output y corresponding to a reference in
X, Is
y=Mx =Yx = |v

vy x

=yath + 0+ vy eN)
=y.

where the last line follows from Eq. (3).
output vectors for the N reference vectors a
the desired y,. We note that the maximum
reference input-output pairs we are able 1
equal to the dimensionality of the input vect
maximum is possible because the input v
orthogonal. In general, the number of inp
pairs that can be stored in an associative 1
about an order of magnitude smaller than t
sionality of the input vectors.'”

For the case of a general input vector x cc
ing to the full lexicographic ordering of an
input image, more than one of its compone
nonzero, and the components can take al
integer values. The output vector y corresy
this input vector will be

v = Mx

=Vl oo v N

which is a linear {weighted) combination of
ence output vectors y,. This is exactly what
for a linear transformation. Therefore.
transformation can be achieved through the
associative memory approach. We now d
further.

D. Memory Matrix for Linear Shift-Invariant
Transformations

Equation (4) gives a way to construct tb
matrix M for an associative memory that c¢
any linear transformation. Let us assum
transformation is shift-invariant as well as
the case of 2-D images, this shift-invarian
means that the shape of the curve to which
pixel maps does not change, and if the posi
nonzero input pixel is translated by a certa
the positions of the nonzero output pixels a;
ed by the same amount. Since our input :
vectors are simply the lexicographically o1
sions of the 2-D image data, a 2-D transla
image is equivalent to a 1-D translation in
tors. This holds as long as the shifted point
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the input field of view and as long as the dimension of
the vector equals the dimension of the full input image.
[This also holds when multiple objects are present in
the 2-D input. We map input points to output curves,
and thus objects (viewed as a sum of points) map to the
sum of the output curves.] Potential problems can
arise near the boundaries of the 2-D input image if the
whole output curve does not fit in the 2-D output size
specified. This problem can be overcome by slightly
modifying the approach presented here. In the inter-
est of presenting the concept, we do not concern our-
selves with this case. Since the input and output
translations are equal for the shift-invariant case, it
follows that the input and output vectors should be
equal in length or M = N for the shift-invariant case.

Thus, since our reference input matrix X consists of
column vectors x; which are just translated versions of
one another, for the shift-invariant case, the reference
output matrix Y also contains y, that are translated
versions of one another. Specifically, x, is obtained by
vertically shifting x,—1 by one unit and y; is obtained
by vertically shifting y,—1 by one unit. Therefore, we
can write

v = {(\) IR (91

It follows from Eq. (9) that for the case of linear shift-
invariant transformations, the matrix M is lower trian-
gular and Toeplitz.

E. Memory Matrix for Quasishift-Invariant Transformations

In this paper, our specific concern will be with the
straight-line HT for reasons explained in Sec. I. Al-
though most of the generalized HTs are shift-invari-
ant, this is not true of the straight-line HT. However,
it is shift-invariant for certain translations. We refer
to this property as quasishift invariance. In the case
of quasishift-invariant transformations, the memory
matrix M = Y can be partitioned so that Y =
[Y,IY.l...1Y ]. where the column vectors in each par-
tition Y, satisfy Eq. (9). The corresponding input
vector elements can be similarly partitioned so that x
= [X,, X......Xy |7. Thus, for the case of quasishift-
invariant transformations, Eq. {8) becomes

yEYx =Y x b F Y x (lth

[t is possible that the y, terms satisfving Eq. (9) are not
contiguous in the original (lexicographically ordered)
memory matrix M. In such a case, the columns of M
have to be reordered, and the elements of the input
vector also have to be reordered accordingly. This
means that the input image will now have to be ordered
(or scanned) differently to make the matrix X equal to
the identity matrix. We now illustrate these points
with examples of shift-invariant and quasishift-invari-
ant Hough transtorms in the following section.

. Shift-Invariant and Quasishift-Invariant Hough
Transformations

We now give examples of shift-invariant and quasi-
shift-invariant Hough transformations and their asso-

ciative processor formulations. We firs
generalized HT for circles because it isay
of a linear shift-invariant transformatic
concentrate on the straight-line HT and
space transformations, since these are ow
cern in this paper.

A. Generalized HT for Circles

We first consider the generalized HT
circles of a givenradius r. In this case, ea
in the input image is mapped to a circle of
the location of the center of the circle be
tion of the input point. In other words, t!
maps to the curve

(RO TR O

in the (x’,37) output plane. The accumul:
mappings for all input points vields a peak
with coordinates that denote the center
If the input point (x,v) is translated
amount, the output circle is translated
amount (see Fig. 1). Therefore, in th
memory implementation of this transfo
columns of the matrix M are shifted ve
another, and each columny, of M discribe:
points on the circle of specified radius r.
shift-invariant transformation. To dete
other radil, a new M is necessary for each
line HT's allow for an easier search of cir¢
ent radii as we see in Sec. II1.LE. General,
similarly defined for other curves, but stra
realizations (Secs. [11.D and I11.E) appear
able. especially when distortions or dif
parameters must be searched.

B. Slope-intercept Straight-Line Hough Tran:
As another example, we consider the ¢
tercept(c) parametrization” of the straig
In this case, each point (x,v) in the inpt
straight line in the (m.c) space given by

vEmy 4o, or = —am 4+

This defines a straight line with slope

intercept 3 in the HT output (m.c) space.
mulation of these mappings for all points
the input gives rise to a peak in the output

. N

Fieo 1 Example of the shitt mvariance of the gend

circles o mpats Ay outpat of generalize
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parameters of the input line. If the input point is
translated to another location (x',3”). the straight line
to which it maps is in general not a simple translation
of the straight line in Eq. (12), since both the slope and
intercept can change. Thus the mapping is not shift-
invariant. If, however, we translate the input point
along the y axis only, the slope of the new straight line
remains the same, only the intercept changes, and the
mapping is a simple translation (in the intercept ¢ by
an amount v — y') of the old line given in Eq. (12). We
use this to produce a quasishift-invariant transforma-
tion. We scan the image vertically and note that all
the y, terms corresponding to pixels along any vertical
line in the input are shifted versions of one another and
thus fall into one partition in Eq. (10). Different
partitions are required for each column of the input.
Thus, the number of partitions is equal to the number
of columns in this case. However, when the input is
scanned along vertical lines, the y, terms that satisfy
Eq. (9) are contiguous, and the mapping is easily
achieved and used in a quasishift-invariant processor.
In all our transformation cases, the partitioning of X
and Y is such that the number of partitions N, in Eq.
(10) equals either the number of rows or the number of
columns in the image. This may not be the case for
other transformations.

C. Normal Parametrization of Straight-Line HT

The effect of input shifts on the y, vectors in the
normal parametrization of the HT is considered next.
In this case, each point (x,v) in the input maps to a
sinusoid in a (#,p) Hough space given by

p =X cost+ v sint
=t + 40 cos [ = tan T o) (BRI

Equation (13) describes all straight lines that could
pass through point (x,y) in terms of their normal dis-
tance p from the origin and the angle # this normal
makes with the positive x axis. The accumulation of
these mappings for all the points on a straight line in
the input produces a peak in the output HT space at
the (§,p) parameters of the line. In general, if the
input point is translated to a new position, both the
amplitude and phase of the sinusocid to which it maps
change. Hence the output mapping is not a simple
translation. However, il the input point is translated
so that the new point and o.iginal point lie on the same

e .

e . . . . .

1

i 2o Example of the guasishitt invariance of the straight line
HT: vavmprrsthystraight Jine HL.
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circle centered at the origin, the output
translation of the sinusoid given by Eq.
occurs because the sinusoid’s amplitude (x*
the new point remains the same, and onl
shifts, asshown in Fig. 2. With this insight,
if the input image is scanned in a polar f.
normal HT can be made to be a quasishif
mapping that is shift-invariant for shifts
To avoid scanning the image in a polar t
could perform a simple rectangular-to-polai
dinate transformation of the input image
conventional raster scan. The polar tran
verts the circular translation required for
invariance into a linear translationin ¢. Tt
data are shift-invariant in ¢ but notinr. ]
input image is converted to a polar (r,¢) 1
tion, a normal HT of this polar data will be
invariant and will have partitions of M wit
that are shifted versions of one another. T
since the transformed input points along ar
alle] to the ¢ axis (i.e., points in the origin:
any circle centered at the origin) will have
outputs in the Hough space that are tran
sions of one another. Each partition corres
row in the (r,¢) representation. Unfortu
though the retangular-to-polar transforma
ear, it is not shift-invariant. Thus the :
memory shift-invariant mapping techniqu
cuss cannot be used to implement the polar
One could implement it by computer-gener
gram methods or by a camera with a spe«
Therefore, although we can theoretically irr
polar coordinate transform and a normal st
HT using an AM architecture, we cannot us
ple and elegant architecture presented in t
The normal straight-line HT is nevertheles:
ful for distortion-invariant pattern recogni
plained in the next section and can be easily
using other methods.”!" The preferable sys
HT for distortion invariance would thus
techniques to produce the HT and would u
approach to do the other transformations in
space that are required for distortion-invari
location.

D. Hough Space Transformations for Distortior

We now discuss some of the transformati
straight-line Hough space that can be used
distortion (scale, rota.on. and translatio
ant.'" We consider the normal straight-line
the transformations here are easily desc
made. The normal straight-line HT, as des
Eq. (13), is not invariant to scale, rotation, ar
tion changes of the input object. However,
ble to perform transformations in the Houg
that the effects due to these distortions are el

Similar transformations to those discusse
be derived for the slope-intercept straight
but these are much more complicated and
implemented in a simple way. Generalizec
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also be made distortion invariant but only for one type
of object or curve. These restrictions do not apply to
the normal straight-line HT, as we describe in what
follows.

Let the input object consist of a set of line segments
and let (#,p) be a point in the Hough space correspond-
ing to a line segment in the input object centered at the
origin. If the input object is scaled by a scaling factor
s, it can be shown'~ that the line segment would map to
a new point (¢',p’) given by

p=sp oand w=a, (14)

Equation (14) defines a transformation that maps a
point (4,p) in the Hough space to a point (#',p") = (0,sp)
in the transformed space. Equation (14) notes that
the transformation is the same (and hence shift-invari-
ant) for each 4, but it is different (and hence not shift-
invariant) for each p. In other words, the transforma-
tion is shift-invariant for translations along the @ axis.
However, it is not shift-invariant for translations along
the p axis. Therefore, this transformation is quasi-
shift-invariant.

Similarly, if (8,p) is a point in the Hough space
corresponding to a line segment in the input object
centered at the origin and if the input object is rotated
by an angle ¢, it can be shown!” that the line segment
would now map to a different point (¢’,p') in Hough
space given by

pr=Epandn =0+ o 115)

Equation (15) represents a transformation that can be
performed in Hough space to search tor different input
object rotations. It represents a shift in the Hough
space along the # axis. Since the shift is independent
of the position of the point, it is a shift-invariant trans-
formation.

Finally, it can also be shown'- that if the input object
is translated by (xy,3), the point (#,p) will now map to
the point (6’,p’) given by

pEemp=teositt =y and® =04+ 2 i pteos = <,
pEpn+reostt—oand i =0 it pAcos =g 20,
1161

where
fEG N T eo= tan Ny, x (1T

n

Equation (16) represents a shift along the p axis. The
shift is not uniform for all points, but it is the same for
all points that have the same # value. Thus it is a
quasi-shift-invariant transformation.

The above transformations for rotation and shift
both require the Hough space to be scanned in the
direction of the p axis and are shift invariant in p.
Thus they can be combined into one quasi-shift-in-
variant transformation. By performing these trans-
formations for various values of the distortion parame-
ters and comparing (matching) the resultant trans-
formed HT patterns with the HT patterns of various
reference objects, we can identify the object in the face
of in-plane distortions and also determine its distor-
tion parameters. The associative memory architec-

tures as detailed in Sec. IV can perform thes
mations very efficiently and fast. (We

changes in scale as changes in the curve g
and search them by varying the curve de
One measure of how well two HT patterns m
point-by-point product of the two HTs. Th
is also the correlation value of the two HT |
the origin. Thus the matching can be d
optical correlation architecture, For the ce
1-D shift search of the HT of the input mu
pared vs several reference HT patterns, ar
nel AO architecture is possible. Suchal-D

case, as we have shown. If the correlation s
such comparisons exceeds a predetermined
the object is identified. However, comparir
terns for all possible distortions and class
object is not a trivial task (even with the

parellelism of optics). Fortunately, this pr
be overcome by treating the input object as
arbitrary shape and using the procedure de
the next section.

E. Transformations for Detecting Curved Objec

The normal straight-line HT space can al
for curve detection. In this case, we first .
description of the curve in terms of the norn
eters p and . Let this description be

p= T

where ay.. . .,a, are the parameters of the cu
description is a set of peaks in a 2-D norma
line HT of the input curve after thresholding
the points below a threshold to zero and k«
grey-level values of points above the thresl
detect a curve and its parameters in an input
first form the normal straight-line HT of
pattern and threshold it. We then perforr
shift-invariant linear transformation of th
space given by

pEp= Tl a0 =

and then an inverse Hough transform.'* Th
&y, ..., and «, used in Eq. (19) are the par:
the curve being searched for and ¢ its rotat
The presence of a peak in the inverse HT sp:
fies the object. The parameters used in the
mation in Eq. (19) (that yield a peak in tl
Hough space) identity the parameters of t}
curve. Scale changes are viewed as chan,
values of the curve’s parameters «,. The |
the peak in the inverse HT space defines t
center,'” ie,, its shift (xo,vs). Thus this

allows us toridentify a curve's shape, its p¢
and its shift and rotation. Use of this techni
detection of missile trajectories has been
elsewhere.!”

F. Inverse Hough Transform

As a final example of a quasi-shift-invari
formation, we consider the inverse HT nor
For a normal straight-line HT, the inverse

1 September 1987 / Vol 26.No. 17 / APPLIED OPTIC
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Fig. 3. Example of the guasishitt invariance of the inverse H1: (a)
H'T space: (hy inverse HT space.

each point (6,p) in the Hough space to a straight line in
the (x,v) space (see Fig. 3). It is obvious that if the
input pixel at (8,p) is translated along the p axis, the
straight line to which it maps is merely translated in
the direction of its perpendicular, and its slope does
not change (see Fig. 3). Thus this transformation is
shift-invariant in the direction of the p axis. If this
transformation is implemented using an associative
memory, it will be quasishift-invariant if we scan the
input HT along the p axis, and the y, terms that are
shifted versions of one another will be contiguous.

Section IV describes how the shift-invariant and
quasi-shift-invariant transformations can be achieved
optivally using acoustoopue cells. We use the HT
transforiations described in this section for specific
case studies. Section V advances an associative pro-
cessor svstem that is capable of curved object identifi-
cation and location. The system uses the straight-line
HT and the Hough space transformations described in
this section.

IV. Optical Realization of the Associative Processor

In this section, we show how a low-level processor
based on (quasi)shift-invariant linear transformations
can be optically realized using acoustooptic (AO) cells.
It is a low-level processor, in the sense that it operates
on raw image data extracting local low-level iconic
image features (e.g.. lines, edges, and their slopes) and
preserves most of the input datainformation. We first
describe an architecture that can perform general lin-
ear shift-invariant transformations. We then de-
scribe a different architecture, which is capable of
performing general quasishift-invariant transforma-
tions. We would like to restate that these architec-
tures are capable of realizing any general linear shift-
invariant and quasishift-invariant transformations,
hut we focus our attention on the normal straight-line
H'T. because it can be used to recognize objects of
arbitrarv shapes, and it can be made distortion-invari-
ant. Asnoted in the previous section, the transtorma-
tions required to achieve this are quasishift-invariant
and can be easily achieved using the architecture sug-
gested in this section. However, we recommend ob-
taining the normal straight-line HT using the rotating
prism method!" because we need to sample in input in
a polar fashion it we want to use the associative proces-
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Fige 10 Optical realization of shift invariant transtorma

sor architecture suggested in this section to ge
the HT.

We see from Eq. (8) that the output of an
linear transformation is given by the sum of the
ence output vectors weighted (multiplied) by tt
responding elements of the input vector. If the
ence output vectors y, are shifted versions «
another, we can acheive this linear transformat
the simple optical matrix-vector processor she
Fig.4. Thisarchitecture consists of a point mod
at plane P,. the output of which is expanded to i
nate uniformly an AO cell at plane P,. The
ieaving the AO cell is then imaged onto a 1-D de
array at plane P, which integrates in time. |
assume that the AO cell can be divided into M
lengthwise, where M is the number of elements
The vector y, is first fed to the AO cell. and tt
ments of the input vector x are fed to a point m«
torat P;. Asy. propagates downward in tiie 0
automatically creates y., y.. etc. as these are s
versions of y,. Thus, by pulsing P, with the ele
of x at intervals of T /M (where T 1is the apertur
length of the AO cell) and time-integrating c
detectors at P.over N intervals each T ,/M. we a
the weighted sum of the y, as required by Eq. (8).
the case of linear shift-invariant transformation:
M.asnoted inSec. I1. D.) Since we have toloady
the AO cell before we can start the computatior
total time T required to obtain the output is

=T, 4+ NI, M=+ NALT,

In practice, the AO cell cannot be divided into M
[M is the time-bandwidth product (TBWP) of tI
cell], because M is rather large for most cases.
example, consider the case of a generalized H
circles tor a 128 X 128 image. We have N =
16,000. If the AQ cell can only accommodatea T
of m (where m < M), we operate the processo
obtain m of the M output elements at the end of
ms. We then shift out the contents of the det
and repeat the process M/m times to obtain the
output. From Eq. (20), the total time T, tak
produce the output on an m element processor it

To= M a4 N et

ForN=M=128X 128 m=500and T, =5 us. w
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Fig. 5. Optical realization of quasishift-invariant transtormations.

T =~ 5msin Eq. (21), and the point modulator at P, has
to be pulsed with the elements of x at a rate m/Ty =
100 MHz. This is a very realistic data rate for the
point modulator and AO cell.

The above architecture realizes a shift-invariant lin-
ear transformation. However, if we are using the nor-
mal straight-line HT for object recognition, many of
the transformations that we need to perform in the
Hough space are quasi-shift-invariant. We now con-
sider the use of multichannel AO cells to achieve quasi-
shift-invariant transformations. The architecture we
consider is shown in Fig. 5. Similar architectures have
been suggested for high-accuracy vector inner product
processors.'S The input plane P, consists of a row of
N, point modulators where N is the number of chan-
nels in the AO cell. The multichannel AO cell is
placed at P,. Each channel consists of m regions
(TBWDP = m) as in the previous architecture. The
light from each point modulator is expanded to illumi-
nate a corresponding AO cell channel, and the light
leaving the different channels is summed and imaged
ontoa 1-Ddetector array asshown. Let the number of
partitions in the memory matrix Y be N,,, as discussed
in Sec. II. E, where the y, terms in each partition are
shifted versions of one another. Let us assume that we
havean AO cell with N. = N,,. We feed oney, (the first
y,) of each partition to one of the N. different AQ
channels. Each AO channel is assumed to have
TBWP of m. The input vector x is also partitioned
(and rearranged in some cases) so that x =
[x'),x";,.. . X\ ] as detailed in Sec. ILE. These x,
terms are time-sequentially fed to the corresponding
N, point modulators. The system in Fig. 5 can be
thought of as an N, channel version of the one in Fig. 4.
with the N, outputs summed into a common detector
array. The different y, terms in different channels
produce the different terms in Eq. (10), as they propa-
gate through the different channels. Thus the whole
matrix-vector product is achieved at the end of (T./
min s, where n is the maximum number of y, terms in
any partition (i.e., the maximum number of shifted
versions of the y, needed in any partition). As in Eq.
{21). we repeat this (M/m) times for M element out-
puts greater than the TBWP = m of the AO cell. The
number of partitions can be greater than the number of
channels. In this case, we repeat the above procedure
N./N, times to achieve the complete matrix-vector
product in Eq. (10). Therefore, the total time T,

4
v
. N
Fig. 6. Block diagram of the proposed optical associati
svstem,

required to complete the transformation is gi
Ty= (N N WMot + i T

If the number of y, terms in each partition is t
n = N/N,. As an example, we consider u
processor to compute the inverse HT. We
the case when N = 72 X 25 (the size of the HT s
=128 X 128 (the size of the image or inverse H'
N, =72 (number of partitions, one for each # v
= 36 (number of channels in the AO cell),

(TBWP of each AO cell),and Ty = 5 us. For

Eq. (22) gives T =~ 330 us. Therefore, the |
architecture is quite fast and realistic.

V. Proposed Low-Level Optical Associative Pr

Figure 6 shows the block diagram of the |
low-level optical associative processor. The
line HT of the input image is first computed.
be achieved in a variety of ways, including
method presented in this paper. Itis, howeve
able to use the rotating prism method."" (Tt
to be the most practical technique. since the A
od requires that we scan the input image ir
fashion or perform a rectangular-polar tra
tion.) The HT obtained is operated on by an
tive processor (performing quasishift-invaria
formations) to determine the curve parame
the rotation value for the curve. The opera
quired on the HT are linear and (quasi)shift-u1
as explained in Sec. III. Hence the architect
gested in Fig. 5 can be used to perform thes
tions. The same architecture is then used to
the inverse HT to provide the translation pa
of the object. Thus this processor can be reali
one HT unit and two AO cell AM units of
shown in Fig. 5.

Some advantages of using this technique a
below. We use the normal straight-line HT
objects of all shapes and thus avoid the use of .
generalized transforms for objects of differen
The transformed spaces are always 2-D, whic
simpler and more efficient use of memory. T
od also works for multiple objects and partia
Other associative memory techniques first us
toassociative memory to map partial object
objects and then a heteroassociative memory
object identification. Since our method work
tial objects, we do not need the autoassociativ

1 September 1987 © Vol. 26. No. 17 / APPLIED OPTICS
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ry. The use of different transformations in the Hough
space and an inverse transform to achieve the object
identification and location in our associative memory
mapping is more efficient than a more conventional
autoassociative memory followed by a conventional
heteroassociative memory that maps every possible
distorted version of the various objects to appropriate
output vectors.

5 -uymmary and Conclusions

In this paper. a new approach to achieving linear
transformations on 2-D images using associative mem-
ories has been suggested. We have shown how general
linear transformations can be viewed as associative
memories. We have detailed the different linear
transformation operations required for the case of an
HT feature space for pattern recognition and how each
can be achieved by an AM processor. These include
the Hough transform, the HT space transformations,
and an inverse Hough transform. The construction of
the memory matrix required for each associative mem-
ory processor has been detailed, and an architecture
for its optical realization has been suggested. The
architecture is simple, elegant, and capable of real-
time processing for shift-invariant as well as quasi-
shift-invariant linear transformations. We have thus
suggested a low-level associative processor that uses
linear transformations for the recognition and location
of curved objects. The processor can be implemented
optically.

The support of this research by a grant from the Air
Force Office of Scientific Research (grant AFOSR-84-
0293) as well as partial support from the Office of
Naval Research is gratefully acknowledged. Fruitful
discussions with Bradley Tavlor are also acknowl-

edged.

References

D). Casasent and V., Sharma, “Fourier Transtorm Feature
Studies,” Proc. Soc. Photo-Opt Instrom. Eng. $49, (198
1. Casasent and D Pxaltis, “New Optical Pranstorms t
tern Recognition,” Proc. IKEE 63, 77 (1977,

30 POV COHough, “Method and Means tor Recognizing ¢

Patterns<,” U8, Patent 3,064,654 11962),

. R. O, Duda and P. E. Hart. “Use of the Hough Transi

Detect Lines and Curves in Pictures.” ] Assoc. Comput
15, 11 (1972,

-1 HL Ballard and Co ML Brown, Computer Vision (Py

Hall. Englewood ClLiffs, N.J, 1982).

3o Tsuji and Fo Matsumoto, " Detection of EHipaes v a M

Hough Transtormation.” IEEE Tran<. Comput. Com-
(1978

. H. Wechsler and . Sklansky. “Finding the Rib Cage it

Radiographs.” Pattern Recognition. 9, 21 (1977).

. DL H. Ballard. “Generalizing the Hough Transtorm to

Arbitrary Shapes.” Pattern Recognition, 13, 111 1951,

. G Eichman and B. 7. Dong, “Coherent Optical Pradu

the Hough Transtorm.” Appl. Opt. 22, 830 11953y,

-G RO Gindi and AL FC Gmitro, “Optical Feature Extrac

the Randon Transform.” Opt. Eng. 23, 499 (1984).

- PoAmbs, s H. Lee, Q. Tian. and Y. Fainman, “Optical

mentation st the Hough Transtorm by a Matrix of Holoy
Appl. Opt. 25, 1039 (19561,

2. R Krishnapuram and D). Casasent. "Hough Space Tran:

tions Yor Dizerimination and Distortion Estimation,” ¢
Viston Graphies Image Process. 38, 2949 ¢ 19R7).

D Casasentand R Krishnapuram. “Curved Ohject Lo
Hough Transtermations and Inversions,” Pattern Recos
20, No 2o IS 1usTy

T Kohonen, Nelf Organization and Assoctatice A
ispringer-Verlag, New York, 1954,

CGosostiles and DY Deng. On the Etfect of Noise on the

Penvose Generalized {npverse Associative Memory,
Trans. Pattern Anal. Machine Intell, PAMI-T, 358 (198

o1 Casasent and M. Kraus, " A Polar Camera tor Space-

Pattern Recognition.” Appl. Opt. 17, 1559 (1973,

- D Casasent and R Krishnapuram. " Detection of Target

tories Using the Hough Transtorm.” Appl. Opt. 26, 247

Dy Casasent and Bo KL Tavlor, "Banded-Matrix High

mance Algorithm and Architecture.” Appl. Opt. 24, 1478

3648 APPLIED OPTICS / Vol 26.No. 17 / 1 September 1987




i' AFOSR-84-0293, Annual Report

1P

9. STORAGE CAPACITY AND DECISION
MAKING ASPECTS OF OPTICAL
f ASSOCIATIVE PROCESSORS




&

UL’[ . K4
Lovembex 1987

YA

Associative Memory Synthesis, Performance, Storage Capacity
and Updating: New Heteroassociative Memory Results

David Casasent and Brian Telfer
Carnegie Mellon University
Center for Excellence in Optical Data Pricessing
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ABSTRACT

The storage capacity, noise performance, and synthesis of associative memories for tmage analysis
are considered Associative memory synthesis 1s shown to be very similar to that of linear
discriminant functions used in pattern recognition These lead to new associative memories and new
associative memory synthesis and recollection vector encodings  leteroassaciative memories are
emphasized in this paper, rather than autoassociative memories. since heteroassiclitive memories
provide scene analysis decisions, rather than merely enhanced cutput images  The analysis of
heteroassociative memories has been given little attention. Hetercassociative memory performance
and storage capacity are shown to be quite different from those of autoasscciative memories. with
much more dependence on the recollection vectors used and less dependence on M N, This allows
several different and preferable synthesis techniques to be considered for associative memories. These
new associative memory synthesis techniques and new techniques to update associative memories are
included  We also introduce a new SNR performance measure that 1s preferable to conventicnal noise
standard deviation ratios

1. INTRODUCTION

Much has been written about associative memory storage capacity and the recollection and error
correction properties of such memories Seztion 2 reviews associative memory synthesis, several of the
neural and other associative memory models suggested, and advances initial remarks on the storage
capacity of associative memories. The similarity of associative memory matrix rows to pattern
recogpition linear discriminant functions (LDFs) is included. The assumptions on the key vectors in
the different associative memories are also noted, since this is not generally given proper attention
As we shall see, most work has considered autoassociative memories (AAMs) In Section 3, we derive
expressions to show that heteroassociative memory (HAM) performance and storage capacity are quite
different from those of AAMs  We also advance new and preferable’ performance measures to be
employed in comparing such memories Quantitative supporting data on HAM and AAM
comparative noise performance and storage capacity are then advanced in Section 4 We conclude
(Section 5) with initial remarks on different associative memory synthesis techniques to provide
updating and altering of associative memories. Our work and attention to HAMs is especially
important in image analysis, image understanding and pattern recognition, rather than image
reconstruction and image enhancement as is generally the AAM case considered
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2. SYNTHESIS AND STORAGE
2.1 TERMINOLOGY AND PSEUDOINVERSE ASSOCIATIVE MEMORIES

In our notation, the input key vectors x, are of dimension N, the output recollection vectors y,

are of dimension K, there are M key/recollection vector pairs and the associative memory matrix M s
K X N. Anp associative memory Is intended to output a recollection vector ¥, that is closest to or

most closely associated with a given input key vector x, . 1.e. we desire M x, = v, for all k =1 to
M. If we form the key vector matrix X of size N X M (with the x, as its columns) and the
recollection vector matrix Y of size K X M (with the ¥, vectors as its columns). the associative

memory must satisfy M X = Y. If X is square and non-singular, the solution to this can be written
as

>

I

{=YyXx! (1)

l

Generally X is not square and this solution is not of practical use. The typical solution used is

>

M=YX", (2)
where the pseudoinverse of X is

X* = (XTxIxT (3)
and where the vector inner product (VIP) matrix is

v=XxTx (4)

The data matrix is denoted as }:T (it has the X; key vectors as its row vectors). We note that when
the x, vectors are orthopormal, then rl = | and §+ = _)ETA The solution in Eq.(2), with X™ given

by Eq.(3), is useful since XT_)E is a square matrix and hence it has an inverse (if the X, are linearly
independent, in which case V is of full rank). Thus, this solution in Eq.(3) is only possible when the
X, are linearly independent. ln other cases, _)ﬁ+ must be calculated using singular value decomposition

and other advanced techniques, which first produce a set of orthogonal vectors, or which form
separate linear discriminant functions (each of which is a row of the associative memory matrix) The
pseudoinverse solution is an exact solution if the X, are linearly independent (and in this case the

simple X¥ solution noted in Eq.(3) can be used). This pseudoinverse solution in Eq(2} 1s the
minimum mean square error (MSE) solution that minimizes [il-"_\_(}_\'ilg. In cases when Eq.(3) can be
used, ||Y-MX
matrix M is trivial. When M < N, there are more unknowns than equations, and an infinite number
of solutions exist (the underdetermined problem) and Eq.(2) is one of these solutions.  This
pseudoinverse solution is the minimum norm solution [17] to M X = Y, i.e it is the solution whose
outputs y, are the least effected by input perturbations.

]2 = 0. If the x, are orthonormal, then Xt = ET and calculation of the memory

2




ey

The associative memory described above 1s a HAM. The typical associative memory discussed is
the AAM. In this memory, the prior discussion is still valid with Y = X and M = X X™ (thus, the
AAM is a special case of the HAM). We feel that more attention should and must be given to HAMs
Kobonen [1] discusses X §+ as the orthogonal projection operator, where the cutput vector'l
produced is a linear combination of the key vectors with minimum MSE for the case of an AAM

The AAMs and HAMSs described above are the most common associative memories discussec |

The use of the data matrix _.}'T as an associative memory has also been suggested and shown to be a
preferable nearest neighbor associative memory for binary (2] and gray scale key vectors. The
technique by which the associative memory is formed can be used to distinguish different associative
memory systems. Ip one model [4,5,6!, the memory is formed from data matrices of the key and
recollection vectors in & VIP processor. The most common synthesis technique discussed forms the
matrix as the sum of the vector outer products of key and recollection vector pairs ‘1. Some specific
sssociative memories (8] restrict the key vector elements to be 0 or +1. In synthesis, they sum the
vector outer product (VOP) of each vector pair and quantize the final matrix to 0 or +1. In other
cases, the diagonal elements of the memory matrix are set to 0 {usually to model neural networks). In
some memories, recollection occurs after one matrix-vector multiplication. In other cases, the output
from each matrix-vector multiplication is thresholded and fed back to the input of the system, and
the final recollection output 1s obtained only after several iterations. In one of the most popular
associative memories, the Hopfield memory [9,10!, the key and recollection vectors are bipolar binary
and the diagonal elements of the matrix are 0. Some associative memories require sparse key vectors
for efficient recall. Most associative memories are synthesized as matrix-vector processors. However,
analogous holographic associative memory synthesis techniques also exist [11,12,13

Thus, there are a large variety of associative memories. We consider HAMs and gray-level
memories and key vectors. Our general preference in image analysis is to use X, input key vectors
that have no unrealistic constraints (such as linear independence, orthogorality, etc.). In a subsequent
paper, we detail techniques to achieve this and provide examples of ways to achieve the more
important property of shift invariance in associative processors intended for image processing

2.2 KEY VECTOR REQUIREMENTS

Generally, key vector image inputs cannot be assumed to be linearly independent, and thus the
practical use of associative memories for such image data is of concern. In some cases, linear
independence may occur, of course, but this cannot be guaranteed. If the X, are image domain

vectors (i.e. lexicographically ordered images), and if M < N, then often we will find that the x, are

independent, or at least there is a reasonable assurance that this will occur. However, we note that
there i1s no guarantee of this. If the X, are feature vectors, then generally N > N and the key vectors
are linearly dependent. For the more practical and general case of linearly dependent key vectors, one
can employ singular value decomposition [14]. This algorithm produces orthogonal vectors and for
the case of linearly independent key vectors it addresses practical numerical stability issues associated
with calculations of the inverse of V. This merits attention, since the condition number of ¥ 1s the
square of that of the matrix X. The problem with the SVD technique 1s its high numerical
computational load, which precludes its use in real time and its use for updating associative memory




matrices A modified Karhunen-Loeve approximation to X' developed for imuage fomam synthet
discriminant functions is quite useful here also '157 It allows operaticn on hohodimensi-gle,
linearly dependent ket vectors. The technique used 1s to calculate the eigenvectors of the correlatinn
matrix from the much smaller dimensionality VIP matrix. We do this for the key vectors for each
class  We retain only several (typically 3) eigenvectors per class  We then crthogonanze the
eigenvectors from all classes (using Gram-Schmidt (GS) or related technigues’ All of these
calculations are performed in the reduced VIP spuce, hence allowing real time calculations  The
memory can then be easily described in terms of the original higher dimensionality 1mage space
These final eigenvectors are then used as the rows of the associative memory matrin  We refer to this
as the VIP-GS associative memory synthesis technique [3].

The direct synthesis of an associative memory as the sum of vector outer ;roducts of each
key/recollection vector pair requires orthonormal key vectors (and will not yield correct results even
for linear independent key vectors, since SikikT = X Z(_T = l(l’r}_)l}_'r = X X7 only for
orthonormal vectors). Similarly, the simple VIP synthesis of an associative mem~ry also requires
orthonroma. key vectors. However, when a nonlinearity is used at the intermediate plane 4, where
the product of the input vector and the data matrix is formed, the requirement of crtherormal key
vectors can be reduced However, il the key vectors are only restricted to be linearly independent.
this method will still not achieve proper results The VIP-GS synthesis technique and the iterative
Widrow-Hoffl are two very attractive and real time techniques for associative memory synthesis in the
practical case of linearly dependent key vectors

2.3 ANALOGY WITH PATTERN RECOGNITION LINEAR DISCRIMINANT
FUNCTIONS (LDFs)

We now discuss how the different solutions to M X = Y are related tc different pattern
recognition LDFs  For linearly independent key vectors. the pseudoinverse soluticn is related (o
various synthetic discriminant functions (SDFs) (15, for distortion-invariant pattern recognition. 1 e

the outputs from the pattern recognition system are analogous to the recollection vectors Y, o
associative memories and the key vector input images X, are analogous to the images to be classified

independent of distortions, etc. To see this, we consider the filter function (or associative memory
vector) h to ve a linear combination of several key vectors, i e

h=Tax =Xa (5)

where X has the training images or key vectors X; as its columns and the vector a has as its elements
the coefficients 3, that describe the filter function h  This filter is the solution a = \_"13 toVa=uyu

where V' = lT_)g is the VIP matrix and u is the vector of desired outputs whose bit code denotes the
class of the input key vector x under test. The filter function, when written as a row vector is thus
the following solution

T = o T IXT = o Tx (8)




This solution s the sume as Eq (2}, where each row an the paeudoimverse mmen oy os aogiver ol
with the corresponding row of Y given by the row vector 31 cutput enceding  The use of K omit
SDFs (hl to h}\.) with different output codings y, or the analogous associatise memory can the

used to distinguish different versions of one class of an object and to discriminaste 1t from other “boe e
classes. This analogy 18 most attractive, since the hy filters synthesized ab.ve can be m~ il o
allow different distorted versions of one object (e.g several x, input key vectors) to be assoriated
with the same encoded output (e g the same Yy recollection vector) which will now denote the cluse o ¢

subset of several input Xy key vectors (1e all distorted versions of an input can be assigued the same

lk)

Incorporation of these pattern recognition techniques into associative memory svnthes:s allzws
significantly different recollection vector encodings from the conventional unit vector ones to be
employed Incorporation of these new recollection vector encodings and the associated new associative
memory synthesis techniques allows the size of the matrix to be significantly reduced and it adds a
distortion-lnvariant property to the associative memory. As we will show, the use of such encoding
technigues actually provides improved noise and storage capacity performance over the conventicnal
unit vector HAMs. We note that for the SDF solution, we must be able to invert V and thus this
technique also requires linearly independent key vectors, or the use of advarced techniques in th-
synthesis of such filters. We also note that many pattern recognition preprocessing techniques hav=
been described to achieve the necessary preprocessing to provide hnearly independent as well as
orthogonal key vectors. Many of these techniques are off-line  However. when the associative
memory need not be updated, these synthesis techniques are appropriate

We now consider the analogy between MSE associative memories with linearly dependent heu
vectors and the typical MSE LDFs used in pattern recognition when the x, are feature vectors I

this case, the LDFs are denoted by v, and the VIP projection values w T}; determine the regicn 1o &

K
hyperspace 1o which the input kev vector lies and hence determine the class of the input data  We
note that there is no assurance that even the training set data will be correctly classified by this

technique {since this is an approximate rather than an exact solution).

Various LDF techniques to calculate associative memories are now summarized In each case, we
calculate a LDF >, and use it as a row of our associative memory matrix. e design this LDF to

yield an output of “1* for certain classes and an output of *0" for the other classes {1 e according to
the coding desired and required for that row of the matrix). A multi-class problem 1s addressed by
specifying two classes for each LDF, with each of these two classes being subsets or groups of more
thap two classes, with the output K-tupie or binary code allowing the final one-of-many class decisicn
to be made  Use of such techniques allows the application of associative memories to 1mage analvsis,
distortion-invariance, and can significantly increase associative memory storage capacity, as we wili
note and quantify LDFs that can be calculated using the training set in-class and between-class
scatter matrices include the Fisher LDF and the Hotelling LDF.

3. NOISE PERFORMANCE AND STORAGE CAPACITY
OF ASSOCIATIVE MEMORIES
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3.1 INTRODUCTION

This setion provides o theoretical analyvers of noase performac and storagr capn

and HAMs  We emphasize the difference in AAY T and HAM resuit the need fora now g

measure and how different recolicction vectar - Loices ALt mprave resuits

reading. details of several important recont resuits are : 1noappendices ‘

emphasize the key points with a munimuin of mathematical digress -n We first & -

and introcduce our notation. The input key vecter 1a x = X o whire x, s coe AR N
,\

ard n iz a noise vector of zero-mean noise with a covanance mattin L= o 71 W

. ) .2 . .

vanance c¢f the input and output ncise by c,” and ¢ 7, where the varance of a rand oo
2 2 oL 2 (2 ‘ : .

o= E{s"}-E{x}" For zero-mean data, o = Eix Vo Thas s the case for the inpat

P

noise, since the associative memory matrix operator M s linear (1 no output threshoidn

We use subscripts to denote gpecific vectors 1n a set and superscr.ots to denate the ele
p ) i P

. 2 2 : Efi
vector. In this notation, g = E{(n')"} (from the delimiticn of n:and e 7 = E{iy
requires two terms since y Is not yet known), where y = M x. the recollection vecter ¥y ¢
to the key vector X, and the expectation operation 1s over only the elements of the vectc

all vectors v

3.2 PRIOR RESULTS

[N}

-- 2
The typical associative memory performance measure used has beon o, .¢

h AAMs that

this parameter indicate good perfornance  Kohonen ') proved

and reasone I that the result for HAMs would be about the same O

er work 16 showes
incorrect The documentation of this work is very terse and thus it merits more detalls
provide.  All steps are provided in appendices, with the results highlighted here M.
simulaticns were performed for the AAM case 16, with the key vectors chosen from
distribution between -1 and ~1 and with the key vectors required to be linearly independe
found to be a requirement, although it is not noted in the original work) The kev test v
formed by adding a zero-mcan random variable (with uniform distribution over -1 to -
element of one of the random reference key vectors For each associative memary matrin
kev svrctors (each of length N) were tested using one reference vector with ten differ

realizations of noise with the same level o, We assume that this 1« what was done o0 ¢

reference Iifferent NN ratios were tested by fixing N o= 50 and by varving M (1 e

input vecturs used o test each memory matrin M) For the case .7 a HAN each elemen:

1 . ' . [ . . B 3 . H - - 0 0 3 n .
FrellelUrecs ect o ven Lon was e clesen T fram a untformn detn wtion beiween -1 oan

recolieston vectere had o than one 17 and are thus not unet vest re

We define the stgnal power of a veotor e e E{0)170E
a

vert ot nean fromnoan o elenente wn b e ont iires the averay
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vector. Since the key and recollection vectors were chosen in the same manner 1o these ear

2is equivalent to the input-to-ocutput SNR ra

will use this SNR ratio in our later work (Sections 3.4 and 4) as a preferable performance me
more practical cases when the input and recollection vectors do not have the same signal pow
proofs of the various theorems to be advanced in this section and in subsequent ones do no
equal signal powers for the key and recollection vectors

(16], their signal powers are equal and 002/0.l

We pow state four theorems [16!. Proofs of each are provided in the appendices.

‘ . . 2 . 2
e Theorem 1. For any matrix recollection ¥y = M x, we find o, /oiz = ,'\E{mlJ }. wh

m;; is an element of M and the expectation is over all elements of M.

o Theorem 2: For an AAM with linearly independent key vectors, we find E{ml
M/N?.

2
V)

e Theorem 3: For AAMs with linearly independent key vectors, combining Thecrems 1 a
2, we immediately find

o 2/0.2 = M/N.
o] 1 !
e Theorem 4: For HAMs, we find

o /

o /o = E(y FIE(TH( ),

where Yi, i1s an element of Y, V = }.T}_ and the trace (Tr) i1s the sum of the diagor

elements of the matrix poted in parentheses following this operator. The first expect
value operator is taken over all elements of Y and both expectacon operators are tak
over the entire ensemble of possible key and recollection vectors.

3.3 DISCUSSION AND ANALYSIS

Theorem 1 is useful since it applies for any matrix with no key or recollection vector assur

We will use it in developing more general and more easily evaluated expressions of associative
performarce,

The result in Theorem 3 agrees with that of KKohonen {1), who obtained his result b
different techniques. This result shows and quantifies for linearly independent key vectors (r«

. 2 0 , : ‘
M < N) that 0,7/0,°<1, i.e. an AAM always reduces the input noise (or in the worst case whe

N. the input poise is not increased) This also shows that the noise improvement for a AAM |

as M/N decreases (i.e. as fewer vector pairs M are stored or when larger dimensionality N key

. . Al ]
are used). For an AAM design, the amount of input noise expected 0" 1s specified and the

v 2 . :
determines the output noise o onc will have to contend with Iu later work, we will quan’
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amount of output noise that one can have and achieve a given probability of correct ciassific
different output recoliection vector encoding schemes.

Theorem 4 shows that the amount of noise reduction in a HAM depends on the key vect

occurs through the Tr(_\_"l) term) and that it also depends on the recollection vector choir
(this occurs through the ¥ij term) and that its performance does not depend as explicitly oo M

as is the case with an AAM. This is a most significant result, since AAM storage capacity a
performance depends only on M and N. The remark has been made {16] that HAM perform
be very poor, even with linearly independent vectors. To see why this might occur, it is nc

the determinant of }_Tl can be small (even with linearly independent x, vectors). This occr

XTE is nearly singular. In this case, Tr(l"l) becomes large and poor performance will res
note that poor performance would also result from any associative memory matrix synthesiz

the case when l‘_"l was hard to compute, i.e. when its condition number was large. We note
general AAM performance measure equation does not reflect the effect of the condition num
directly. However, the HAM expressions do reflect this issue, through their dependence on
matrix V. Thus, it may appear that HAM performance would be poorer than that .
performance, even with linearly independent key vectors. However, this is not necessarily the
we have noted above. We will quantify these remarks in our data (Section 4). In deriving Th
we assume equal energy for all recollection vectors (but their energy is not assumed equal t
the kev vectors)

We note that the ensemble averages in the equations in Theorem 4 make evaluation of the
performance measure for a HAM impossible to evaluate, except by a Monte Carlo technig
Monte Carlo method calculates c7o"’/cri2 by averaging over a number of different associative r
(1.e. different key and recollection vector pairs). For this reason, the results of a Monte Carlo

as obtained earlier [16] are not necessarily a good estimation of <702/'<7i2 for specific problems

other 002/0i2 expressions are desirable, in which the expectation over the entire ensembl

required. In addition, in the prior tests [16], the recollection vectors used were random, h
thap ope 1", and had energy equal to that of the key vectors. This is appropriate for an AA
not the conventional HAM situation and (and we shall show) the choice of the recollectio
significantly affects HAM performance. Specifically, the test results in {16 are not vahd
recollection vectors, binary encoded recollection vectors, etc. Also, if the dimensionality of
and recollection vectors are different, then the test results in [1° are not too useful. In addi

. 2 . .

variance of the 002/0i~ measure can be quite large (especially when averaged over 2 nu

. . . o, 9 .

different associative memories). Thus, the resuitant 0,"/0," average can be meaningless ai
(2] n e . N

better (smaller) oo‘/ai‘ values can result for specific HAMs When the rules we denve

: 2, 9 :
design are used, better o, /oi performance measures will result

0 n . . . . R
Other oo‘/ol‘ expressions are possible in the case of unit recollection vectors, Y = cl. whe
constant In this case of HAMs with unit recollection vectors,
2 P}

L2 2o -l
7,0 = (¢ AR)Tr N
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The second instance in which an equation without all expected value operators 1s possible oo

&

the case of orthugonal hey vectors In this iastance of HAMs with orthogonal key vectors
o o ~ N a~1
0, /0" = l;{_vi)-'}TrA\ b (1

where the expectation operator is the average over all squared elements of Y  Since <Ko
equals E{yij?} for Y = cl, Eq.(10} is equivalent tc Eq(9). Thus, in terms of performance, as
unit recollection vectors is analogous to using orthogonal key vectors. This 1s a notewort
result, since one might feel that orthogonal key vectors would yield better performance Thu

follows from linear algebra, since ¥ (and \_"l) are diagonal if the key vectors are orthogon
yielding only the trace elements of the matrix

For cases when no conditions cn the recollection vectors Yy (such as unit recollection vect

made and similarly when no conditions on the Xk key vectors are made, Theorem 1 can be us

alternate 002/0i2 expression can then be found by substituting Eqs (A10) and (A13) in the app
into Theory 1 to obtain

2 9 ) i 1
o “jet=(1;K)TEL T~ Y. Y., (1
o ) Cm Kk mk m- ik

where vmk-l is the mk-th element of }_—1. Eq.(11) 1s equivalent to Theorem 1. However, calcy

using Eq.(11) are preferable since it provides the result without the need to first explicitly comp

In our quantitative test data, we will use Eqs.(8), {9) and (11) for different cases Eq (8} app
AAMs with lipearly independent key vectors and Eq(9) applies for HAMs with Lineariy indep
key vectors and with unit recollection vectors Eq.(10) applies for orthogonal key vectors and
has no conditions on the recollection vectors or the key vectors

3.4 PREFERABLE SNR ASSOCIATIVE MEMORY PERFORMANCE MEASURI

All prior theoretical studies [1,16] of pseudoinverse associative memory noise performanc

2, 2 o A .
used the o, /oi‘ performance measure. Other work on associative memory capacity either de

consider HAMs, yields bounds (not exact expressions), or does not consider noise  This ¢

perforraance measure 1s valid for AAMs, but not for HAMs, since its resultant value can be r
(improved) artificially by merely reducing the energv of the recollection vectcis (i e by usir

a

- o .
rather than binary-encoded recollection vectors). Our o, 0" data verifies that umt recol

. . o n
vectors perform better than binary encoded ones To see the problem with the o 0" m

consider Theorem 1 for the case of a HANM Il we scale each X, by a constant ¢, and each y

constant Cy, then the new associative memory matrix is M/ = (cy,/cx)l\_i, where M 1s the o

associative memory matrix. The new expected value (denoted by an apostrophe) is related
S . 9 o o
expected value for the original matrix {(denoted by nc apostrophe) by E{mu‘}/ = (¢ "¢, JEY
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The new and old performance ratios are thus related by (c,vo“/ai‘), = (cyQ/c"?)ao /e, From this

see that increasing cx/cy results in an improved new 0(.»2/012 ratio. However, this imjrovemer
artificial  We note that this issue does not arise for the case of an AAM (since for this matnx
recollection and key vectors are the same, and thus have the same energy and scaling factors). T
remarks also do not apply to earlier results {16°, where equal energy key and recoliection vectors
used in the Monte Carlo data obtained. This 002/0i2 performance could be applied to an HAM »
Y = | (or to binary-encoded recollection vectors, or to recollection vectors whose dimensionahty k
N), by appropriately scaling the recollection vectors, such that their energy and that of the
vectors is the same In general, with arbitrary key vectors and unit or other possible recollec
vector encoding schemes, the need exists for a different performance measure.

The performance measure we introduce is the output-to-intput SNR (signal-tc-noise) ra
SI\'RO/SNR-‘. The larger this ratio, the better the performance For equal key and recollection ve

energies, this measure and 002/oi2 are reciprocals. We define the signal powers as the expected v

of the square of the elements minus the square of the expected value of the elements, i.e. we subt

off the average or bias energy from our calculations of signal energy. Thus, the signal energies we
are

2 on2 12

5.7 = E{‘xk"")} - E{xk’} (12a)
2 o g2 iy2

s,” = E{n'I"} - E{»,'}", (12b)

where the energy values are averages over all elements 1 of all vectors k. The resultant
performance ratio is then

[#2]

SNR s “o.

o o 1

o el (19)
SNR s“o
1 1 o]

For AAMs (with 502 = 512), Eq.(13) reduces to N/M (from Theorem 3) which is the reciproca
Theorem 3.

Our concern lies with HAMs. For HAMs with unrestricted key vectors, we combine Egs.(11)
(13) to obtain

SNR s, K
—_— ——— ’ 14)
SNR. s%irr o 'ly- y. (
1 1! mk “im- ik
1 m k

For HAMs, with Y = cl (or for the case of orthogonal key vectors), we combine Eqs (10) and (13
obtain

10




e

2l

SNR s -
> = 0 no 1y (15:
SNR, sl‘E{ylj‘}Tr{_\_ }
) 2 , .
For zero-mean key and recollection vectors, s = = E{,\'”Q} and 512 = E{xlj‘} = (I/MyTr{V} L
these assumptions, HAMs with Y = ¢l (or HAMs with orthogonal key vectors) yield
SNR M 1

SNR, TrVITIVY M

where the last equality holds for orthonormal key vectors, since V = h'r_\_\_ = land TriM) = Tr
= M for this case. We will employ the different performance measures noted in Eqs(13-715) 1
quantitative comparison tests of performance in Section 4.

3.5 DATA MATRIX AND PSEUDOINVERSE HAM NOISE
PERFORMANCE COMPARISONS

A brief comparison of the data matrix and pseudoinverse HAM with unit recollection vectors (
1) is now provided. Linearly independent key vectors, each normalized to unity, .ith all elen
positive, are assumed. This is necessary for a comparison with no differences in the key vectors,
the pseudoinverse HAM requires linearly independent key vectors and the data matrix associ
memory requires normalized key vectors. The HAM with M = Y X and the data matrix with |
_}_(T are both M X N in size. The data matrix is thus equivalent to a pseudoinverse HAM with
@T)i)'l. Thus, in our performance comparison. we compare a HAM with Y = ] to a HAM (the
matrix) with Y = (}:Ti)'y We use Theorem 1

o
0 2/0f = NE{mu?}, (17)
«.nce it applies for any matrix. For the HAM with Y = J and M <« N, Eq.(17) is most likely less
one. For the data matrix, with each row being a normalized key vector, the sum of the squ
elements of the matrix rows of M is just M, the average squared element is M/MN = 1/N
0,2/a.2 = N(1/N) = 1 from Eq.(17). With Eq.(17) being less for the Y = I HAM, it will have
output noise for a given input noise level. This better performance is expected, since all outpu
the Y = | HAM recollection vector are expected to be zero (except one). To consider how ou
noise effects recall accuracy in the two memories, note that all Y = ] HAM outputs are ideally
except for the single element with a “1" output; whereas for the data matrix, the non-one ou
elements are the vector inner products of the input and the different references and will clear!
greater than zero. Thus, the same amount of output noise in each memory can more easily cause
matrix output elements to be in error (more easily than is possible for the Y = | HAM) 1
differences must be weighed against the advantages of the data matrix HAM, such as: it does
require linearly independent key vectors, it yields nearest neighbor performance, it has a large stc
capacity (compared to even the HAM with Y = 1) and it easily allows the contents of the data m
to be altered (by sin:ply changing the vector in one row of the matrix).

11
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4. QUANTITATIVE DATA

This section describes our database, severa! different associative memories formed, test res
associative memories for specific case studies using the different performance measures der
Section 3 and the Appendices.

4.1 DATABASE

The database used to provide quantitative test data (versus numerical calculations base
theory) for specific pattern recognition problems consisted of 32 X 32 pixel leicographicaliy «
binary images of aircraft. Each image was lexicographically ordered into an input key ve
dimension N = 32° — 1024. Two different aircraft, a Phantorn and a DCI10, were used. The
occupied approximately 15% of the {ull 32 X 32 input image frame. Different images of each
rotated in yaw formed different versions of each aircraft for use in different tests and |
database. The Phantom-18 database contains 18 Phantom jet images at 20° increments in ya
a full 360° variation. Cur DCI10-18 database is similar with DC10 images used. We err
Phantom-36 and DC10-36 database set in other tests. These databases contain 36 images pe
with 10° increments in yaw now used. We refer to the set of images used to form the memory
reference or training set. In some cases, we test the performance of the memory using othe
trainiong set images at different yaw rotations. We refer to thes? as test data. For one HA!
Phantom apd DC10 data are used and the purpose of the associative memory formed is to dist
the type of the aircraft, as well as its orientation. In another HAM{ test, we consider only deter

the class of the aircraft, and not its orientation. For noise tests of c:ro‘/ori2 and SI\RO/S.\Ri. :

zero-mean Gaussian poise with five different standard deviations o, to the reference Phant
image. For each input test image with a given o, or SNRi, we form 10 different input
(different input test vectors) with the same o, value and SNR, value (however using 10 d
realizations, different seed values, for the given 9, input noise level). In all noise tests, nois)

images were not rebinarized. This allows a better comparison between theory and tests. To p
model certain real time optical spatial light modulators, we should rebinarize the noisy input
However, we feel that the results obtained with gray-level input test vectors would be represe
of those obtained using rebinarized input key vectors to our associative processors.

4.2 TYPES OF ASSOCIATIVE MEMORIES TESTED

To test and quantify associative memory performance, three different associative memorie
considered. For consistent results, all memories employed M == 36 key/recollection input vecto
(the Phantom-18 and DC10-18 databases). The AAM was formed from Eq.(2) with ¥ = X.
different HAMs were also constructed. HAM-1 used unit recollection vectors with Y =: | in
with 8 different K = M = 36 element output recollection vector for each of the 36 input i

The second HAM-2 tested had N = 1024 and M = 36 (as did all associative memories constr
and used only two element (K = 2) output recollection vectcrs [I,O:T and [O,]]T for the Phanto
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DC10 inputs respectively (1 e all 18 Phantom key vectors were assigned the sare cutput receliec
vectlor [1,O}T with the other recollection vector (0,1} used for all DCI10 inputs)  Since beotn Phan
and DCI0 inputs were used in fabricating the associative memories, they aclieve both intra-c
recognition (e.g. the recognition of different distorted versions of the same aircraft 1e a Phant
and inter-class discrimination (cistinguishing a Phantom from a DC10). The HAM-2 1s approp
for image analysis when the type of object rather than its orientation 1s desired  This 1s ¢
different from the HAMs conventionally considered. For all associative memories, we calculated
using the IMSL Generalized Inverse Subroutine.  All key vectors were found to be line

independent This was verified from a calculation of the condition number (Xmug’)\mm = 183}

= lTl which showed that the rank of V, which equals the rank of X. was M = 36

pseudoinverse thus equals X7 in Eq.(3) .

4.3 ASSOCIATIVE MEMORY TEST RESULTS USING THE 002/012 MEASURE

Our initial test results are summarized in Table 1. Each entry in this table is the average ol
realizations of noise with the standard deviation listed. The performance measure tabulate
002/'012 for the AAM and the two HAMSs constructed The average of the measured 002, 012 value
all 50 noise image tests for each associative memory are given in the bottom of the table
theoretical value for the AAM is calculated as M/N from Eq.(8) and it agrees quite well, within
with the measured average. For both HAMs, theory and experiment also agreed quite well (wi
1.5C and 11%). The theoretical values for HAM-1 (with unit recollection vectors) were calcul
from the trace of yl 10 Eq(9) with ¢ = 1 and K = M = 36. For the second HAM with only K
output elements, we calculate the theoretical value using Eq.{11). Several initial obvious remark:
in order. First, we note general good agreement between theory and tests. Secondly, we note
HAM-1 performance is 50%% better than that of the AAM (the lower 002,"on performance meas

indicate better performance).

The results (for the specific key and recollection vectors chosen) are quite different from other
Monte Carlo results averaged over different HAMs (using random key and recollection vect
These prior results precicted average HAM performance to be worse than that for AAMs by at
10% when M > 0.2N. Our final comments concern the performance of the two HAMs. The se
HAM (with only two output recollection vectors and two recollection vector elements) perfo:
worse. This occurs since this matrix 1s 2 X 1024 with its first row being a sum of the first 18 ro»
the first HAM and its second row being a sum of the second 18 rows of the first HAM Recall

. , o . : <

the size of the first HAM-11s 36 X 1024 In this case, summing the rows of M increases E{mu )
: ) :

causes an increase in o_“/0,” (and thus poorer performance} In general, summing the rows o

first HAM will not always increase E{mij?'}, since the elements of M are bipolar. Here, an inc
occurred, because the key vectors corresponding to the added rows are members of the same
(rotated yaw views of the same aircraft) and are thus similar, causing the added rows to be sir
We discuss these results and preferable performance measures later in Section 4 4.




TABLE 1: ¢_%/0.? for AAM and HAM

2
=
S,
o | AAM HAM HAM
i vl (.0)T (0,177

oulpuu

0.2 | 00352 | 0.0220 | 0.05949
0.3 | 00359 | 0.0218 | 0.153
0.4 0.0400 0.0253 0.0949
0.5 | 00323 | 0.0180 | 0.201
0.6 | 0.0387 | 0.0236 | 0.0655
averagd 0.0364 | 0.0221 | 0.122
theory | 0.0352 | 0.0218 | 0.136

4.4 ASSOCIATIVE MEMORY TEST RESULTS USING THE

SNR_/SNR_MEASURE

We now test and compare our three associative memories using our SNR ratio performal
measure. QOur results are shown in Table 2. Larger values for this performance measure indic.
better performance. In each case, the data presented is the average of 50 runs for {ive different nc
o, values, with the measured data obtained from image domain tests. These measured data are tt
compared to the associated theoretical equations. The AAM results are the reciprocal of those gin

in Table 1. For HAM-1 (with unit recollection vectors), 502/5i2 is small and for HAM-2 (with /1(

or [O,I]T recollection vectors) this ratio is large (since HAM-1 has more zeroes in each recollecti
vector). Thus, the SNR performance of HAM-2 is better than for HAM-1 (although its 002/<

performance was worse). Eq.(13) and Table 1 were used for all theoretical calculations in Table
From these specilic tests, we find AAM noise performance to be better than HAM noise performar
(as one would expect) and that different HAMs (such as those with K = 2 output elements. t
npumber of general classes of the data) are preferable to the conventional HAMs {(with Y = ] u
recollection vectors with K = M = 36 elements and 36 output unit vectors). This represents a nt

result. These quantitative results in Tabl> 2 are not necessarily general trends, but are da
dependent as we now discuss.

The performance of an AAM depends solely upon the M and N values. HAM performance depen

upon }_"1 with HAM-1 performance depending only upon the diagonal elements of X'l {because DC1
are slightly larger than Phantoms, the diagonal elements are not the same) and wich HAM
performance depending upon all elements of l"l. Since HAM performance depends upon the k
vectors used, no general conclusion on AAM versus HAM performance is possible. However, HAM
with new (binary) recollection vector coding consistently perfor~ better than HAMs with convention

14

. e bt et i A ¥ -




unit recollection vectors Qur theory 1n Secticn 3 predicted tas (for the SNIC rute. perfoon,

measure) The presence of the elements of Y (recollection vectors) in our eguations in Seclic
- ) ksl

confirms this theoreticaliy and our test data in Table 2 quant:ly 1t As Cise ussed 5,78, s Lt

HAM-2, which is the reason why our new HAM-2 outperforms HAM-1

TABLE 2: SNR_ /SNRl for AAM and HAM

SNR 0/ SNRl
AAM HAM] HAM?2
(1.0JT. (0,17}
Y'_‘l oulpuls

averagd 2747 9.14 15.33
theory | 28.4] 9.26 13.75

4.5 LARGE CLASS PROBLEMS

The concern in associative processors should be large class problems (M large) We now bru
consider how AAM and HAM performance varies with M/N  We expect performance to decrease
M/N increases From Eq({8), we expect AAM performance to redure hnearly as M increases
HAMSs, the performance variation with M will depend upon the specific data. Table 3 shows in
results obtained. Egs.(8), (15) and (14) were used for the three associative memories respectively
second database used 36 images of each aircraft at 10° yaw increments and thus represents a large:
= 72 class problem. AAM performance is seen tc be linear with M and thus reduces by a factor ¢
as shown The reduction for the HAMs 1s data dependent. From these data, we clearly sec that H.
performance does not degrade as fast as AAM performance and that at M = 72, the performance
HAM-2 and the AAM are approaching each other. Again, this result is not a general trend that
can always be assured of (since HAM performance is data dependent). However, this lends furt
justification for attention to HAM storage capacity and noise performance and to different out
recollection vector encoding schemes.

TABLE 3: Associative Memory SA'\'RO/S;'\'Rl Performance as M [ncreases

TYPES OF ASSOCIATIVE MEMORY |
ATABASE M AAM HAM-1 HAM.2 {
(Y =1 T
{1,00 and {01
Phaptom-18 36 28 4 9.26 1375
LT10-18 ‘ :
Phantom-36 72 14.2 6 56 11 84
DC10-36 l
1S




5. ASSOCIATIVE MEMORY JPDATING

Brief remarks are now advanced on updating {adding. deleting and reassigning key, recollect.
vector pairs) In associative memories We now use subscripts to derote the number of vector pa
stored  In the case of an associative memory formed from M key recollection vector pairs. M -

_\_;M}_'M'liMT. In this case, we can add a new key/recollection vector pair and calculate the new }
-1

matrix from the pew \’M+l . This is possible directly from X\(-l« by the bordering algorithr

Extensions of this algorithm allow a vector pair to be deleted. This deletion 15 easiest if the last x
and Y)q vectors are the ones to be removed. To delete another vector pair, we first make this the la
vector pair. When the VIP associative memory synthesis technique is used. the key vectors a
orthonormal (this can be achieved on-line as we bave discussed elsewhere), and updating of the matr
M is very simple. In a VOP associative memory, the addition of a vector pair is achieved !
determining the amount of each vector that is new (orthogonal to the prior vector pairs) and includn
it (as a VOP, etc.) to the memory matrix. Deleting a vector proceeds similarly. but requires that t
vectors be removed from all prior vectors. Updating a data matrix memaory 1s trivial as ¢
associated row is simply replaced, with no concern for the other rows

8. SUMMARY AND CONCLUSION

This paper has advanced various new theories and expressions for asscciative memories {or neur
processing. We first noted the different types of associative memaries, the key vector assumplic
generally made and the fact that many of these assumptions are not necessarily valid We advanc
new op-line VIP-GS techniques to calculate the pseudoinverse memory from an orthogonal basis s
We also noted the differences in storage capacity and noise performance {both issues must
considered together) for AAMs and HAMs We advanced a new and preferable performance measu
for more general classes of HAMs We also derived equations which alizw the performunce of differe
associative memories to be computed more easily and without Monte Carlo techniques Our resu
showed that HAM performance depends on the key and recoliection vector choice (whereas AA
performance depends only upon the values of M and N). We bave noted the similarity betwe
associative memory synthesis and LDFs as used in pattern recognition. We find HAM performance
be quite dependent on a set of recollection vectors, and we offered new associative memory desig
with pew recollection vectors (with better performance than conventional HAMSs), desig
incorporating LDF design techniques, and associative memories with increased memory capacity a
reduced memory size. Initial results with such memories appear very promusing Initial remarks
associative memory updating with several new algorithms were also advanced
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APPENDIX Al: PROOF OF THEOREM 1

The output vector is

I (A1l

22
!
-

I

Il

Substituting (A1) 1nto the defimtion of o vields

S _r R A i 2 inlpk (A2
o= E{{Mn "} = _.‘:.,L\mu»ml.k}f‘{n n"} (A2
i
Usi . . e i pouse th .EJJkl_E')‘Qg b j(v,v,'v,lf‘, P
sing the property of uncorrelated noise that E{n’n™} = E{'n }'Jk the defliimion Bl = =~
ﬂ .
and the independence of ¢~ from j and k. we obtain
2 2\'[‘ ': A3\
oS =0 ,{mIJ 1 (A3)

: . 0 : :
Dividing both sides by 0,°, we obtain Theorem 1. This result is vahd for any mainix whose key

vectors are of dimension N and not just for the pseudoinverse matrix solution. Writirng the squared

Euclidean norm <7 M, we see {17] that the minimum norm solution 15 M = Y X7 [t can also be
. . . . . r), v
shown that this solution is optimal for uncorrelated noise. and that 1t minimizes E! 2,0 and also
2, 2 . : : ‘
0. "/o " (1e the SNR ratio for th case of uncorrelated no'se)

APPENDIX A2: PROOF OF THEOREM 2

For independent hey veetors, the solutivn in Eq(2) with X7 defined by Eg i3 v valiz and thus ©o-
an AAN

M= XXT = xixTxyIxT (A4)
The trace of M .__1T 15
TedMT) = oaemT) = som T o T (A5
;T it ) 1) L—
where the lust euadity follows fiom the [act that M s idempotent (N = E"W and svonetnn A

M%) The eigenvalues of an idempotent matrix are O or 1 The number of eigenvalues Uar are 1o

“(M) e the rark of Moand the trace satishies TrM) == (M1 To determne PN far M0 X X7 w

first shaw that rrX5 = Moard that ff(N7 ) - M It then follows that rMy - N - Tod T

TrM - 28 mu"" == M (AB"
L

Using (A6), we prove Thecren: 2
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APPENDIX A3: PROOF OF THEOREM 3

This follows directly by substituting (A7) into (A3).

APPENDIX A4: PROOF OF THEOREM 4

We consider Theorem 1, which applies for any matrix and derive an expression for E{muz} for the

HAM matrix written as M = Y _\[IET. We [irst rewrite (AS5) for the general HAM case of
recollection vectors of dimension K as

TrMMT = T(M MT) = izj.):mu.?, (A8)

where the summation over i runs from 1 to K and the summation over j runs from 1 to N. To
evaluate the Theorem 1 equation for a HAM, we must obtain an expression ior E{mi 2}, Letting the

key vectors x, (of dimension N) and the recollection vectors y, (of dimension K) be random variables,
we form the expected value of both sides of (A8) to obtain

E(TsM M} = DE(m, ?) (A9)
1)

The double summation in (A9) can be rewritten as
E{TrM MT}) = KNE(m ?}. (A10)
To evaluate Theorem 1 for this case and hence E{mijz}, we require the trace of M MT
To obtain this, we substitute Eqs.{2) and (3) for an HAM into M .\_4T and find

MMT =y viyT (A11)

|

The diagonal elements of the matrix product in (All) are

T, _ -1
M M) “f;: k":vmk YimYik' (A12)

where both summations are over the M vector pairs. The trace is the sum of (A12) over the diagonal
elements (i = 1 to K) yielding

20




L

T _— A A\l . -l. , 0y
TrMMT) = S; K Ymk YimYik (A3}

-

o o
To evaluate (A9) and hence UO'/'U <, we form the expected value of both sides of (A% wnd e

1
the expected value operator within the summation as 1o (A9} With statistically uncorrelate dhen 4y
recollection vectors, mG'l and y, v, bave no cross-correlations and the expected value of ther
product is the product of their expected values In practice. this assumption is not realistic, sinve the
Y, depend vpon the x; and are thus correlated (except for the case Y = 1) In testsin 16 each

element of each y was chosen at random for the data that they used  Thus E{v .1}

E{yim2}5km. This result is not valid for binary encoded y, vectors, but is vahd - r unit recolie o
vectors. With these assumptions,

T 1y 2 - 2
E{TTMM I} = ;rj:? “::E{.'bmk }D{:"im }6km = Fr‘g E{me l}E{)’nm }
=z E{vmm"}guyim?}. (A14)

where the last equality follows since E{vmm'l} is independent of i. The second summation in (Al4) is

K times the expected value and E{yim2} is independent of m (for the case of recollection vectors with
equal power). This yields

E{TrM MT]} = KE{y, %JE/TrixTX!1} (A15)

Substituting (A15) into (A10) and the result into Theorem 1, we prove Theorem 4
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ABSTRACT

A directed graph processor and several optical realizations of its input symbolic feature vectors and the multi-
processor operations required per node are given. This directed graph processor has advantages over tree and other
hierarchical processors because of its large number of interconnections and its ability to adantively add new nodec
and restructure the graph. The usc of ihic basic ceicepts of such a directed graph processor offer significant impact
on: associative, symbolic, inference, feature space and correlation-based Al processors, as well as on knowledge base
organization and procedural knowledge control of Al processors. Initial iconic alphanumeric data base results
presented are most promising.

1. INTRODUCTION

Hierarchical tree classifiers have long been used in pattern recognition,l'2 particularly for non-parametric
problems.3' *  Much has been written concerning optimization of tree structures using information theory
techniques.s‘ 6.7.8 However, hierarchical structures have many drawbacks.® A major problem is that an incorrect
decision at a given node can result in misclassification, since subsequent nodes are not designed to accommodate prior
classes. Back-tracking through the tree can compensate for this, but at the expense of classification speed.m The
major problem is the rigid structure of the tree itself, its limited number of interconnections, and its lack of
adaptivity. The optimization techniques mentioned in the literature® ® & are very cumbersome and require a great
deal of processing. This becomes a problem when an additional class has to be appended to the tree. The problem is
that the new class must be added as a terminal node of the existing tree,? but classification of future objects of this
type is penalized since the new node was not fully integrated into the tree structure. To maintain optimization, the
tree must be entirely redesigned, using one of the optimization schemes cited above, for each new added node. This
report suggests an alternate modeling for large-class classification problems using directed graphs. Our new version
of directed graph techniques is very flexible because new classes and restructured graphs can be accommodated easily
without penalty. Our proposed algorithm for directed graph construction is ideal for parallel optical architectures
that can quickly perform the computationally intensive steps of multiple filter or discriminant function comparisons
at each node of the graph. Optical processing is particularly attractive because of its ability to perform many
parallel comparisons concurrently.

The outline of the paper follows. Section 2 explains the topic of directed graphs and introduces the terminology
used to describe them. Section 3 extends the concepts of a directed graph to model general classification problems.
Section 4 outlines our directed graph algorithm and shows its versatility for adaptation and alteration/adaptivity in
the construction and use of the graph. Potential methods of handling input object distortions are also presented.
Section 5 outlines potential optical architectures to produce feature spaces and to implement the directed graph
algorithm in parallel. Section 6 summarizes the findings of this report.

2. DIRECTED GRAPHS

A directed graph (sometimes called a digraph) is a collection of nodes or vertices v, and a collection of arcs




joining some or all of the vertices.!' An example of a directed graph is shown in Figure 1. Note that the graph does

not have to be symmetrical. The presence of an arc from v, to v, does not guarantee that an arc also exist from v, to

v,. Symmetry between vertices can be accommodated in this structure by explicitly connecting two nodes with an

arc in each direction, as shown between vy and v,. Two vertices joined by an arc are adjaccnt. The indegree

(outdegree)ll of vertex v, is defined as the number of arcs entering (leaving) v A loop is an arc starting and ending
on the same vertex, like the one at v A path exists between two vertices if one can travel from one to the other

along existing arcs, as between v, and v,. The cardinality of a path is the number of arcs contained in that path. A

1

path which starts and ends at the same vertex, such as Yy U, v Y,

if some nodes are not reachable from other nodes. This is the case for vertices v

is called a ctrcuit. A graph is disconnected

1Y which are disconnected from
Ve~V

Figure 1: Directed graph

An adjacency matriz’! A determines the arcs between vertices, where the element A(z,7) is equal to one if the
graph contains an arc originating from vertex v; and ending at v, or is equal to zero otherwise. Each row of the

adjacency matrix gives the set of adjacent vertices for a given node. The indegree (outdegree) of vertex v, Is equal to

the sum of the entries in the n'? column (row) of A.

A set of matrices {An} can be defined where each row of A is the set of vertices that can be reached by paths of
cardinality n or less. Using this definition, A =A dcceribes simple adjacent vertices. Let the operation & denote

binary matrix multiplication, calculated as normal matrix multiplication with numerical multiplication and addition
being replaced by logical AND and OR operations respectively. Similarly let €5 denote a matrix logical OR
operation. Then:

A=A QIDA), n>1 (1)

Simply stated, Eq. (1) states that v, is reachable from v, with a path of cardinality n or less if either A"_l(i,j) is one
or A _ (i,x) and A(z,j) are both one, i.e., a path of cardinality n—1 or less must exist from v, to v_ and an arc from
v_ to v. must also exist. Since all problems are finite, meaning that the size of A is finite, a stable result
(Am+1
reachable from every node by any directional path.

= A ) will occur for some finite m. A _ is called the eztent matriz E: it contains the set of vertices that are

3. DIRECTED GRAPHS FOR OBJECT CLASSIFICATION

A classification space can be modeled as a directed graph by mapping each class to a node in the graph. If a wide

discrepancy exists between individual members of a given class, distin. 1 subsets of that class can be mapped tc
different vertices. (In further discussion the term “class* will be used to define the set of objects represented by a
node or vertex, regardless of whether such a set is in reality a subcli-- of a larger class which is represented by




several vertices.) Each vertex has associated with it a data vector, either an image or a feature vector, for the given
class. The arcs between vertices are chosen to show the similarity or connectedness between classes. If two vertices
are adjacent, the classes they represent should be more similar than two classes represented by non-adjacent vertices.
The primary focus of directed graph object classification is to determine A. Our primary attention is: to construct
such an A or graph, its use in pattern recognition, and the role for parallel multi-processor optical systems in such a
directed graph knowledge base organization or procedural knowledge or control system.

Object classification is achieved by finding the vertex (node) within the graph which best matches the input data
vector. The process could start by comparirg the input class to several selected vertices in the graph. The starting
vertex is the one which most resembles the input data vector. The data vector is then compared to each of the
neighbors of this node. Assuming the starting vertex does not represent the input class, a move is made along the
arc to the neighbor vertex which is most similar to the input data vector. The input vector is then compared to each
of the neighbor vertices of this new node. This process continues until the vertex being examined is more similar to
the input vector than any of its neighbor vertices. If the similarity exceeds a certain threshold, then the input belongs
to the class represented by that vertex. If the threshold is not exceeded, this vertex is a local maztma. One then
continues the search to find other higher maxima (using perturbation, i.e. jumps to other regions of the graph). If
every node has been examined and no maxima exceeds the threshold, the input data is viewed as a new class and
either a new node (class) is added to the graph or the graph is restructured (depending upon memoyy ‘irrilations).

Searching through a directed graph is very similar to traversing a hierarchical tree classifier. All such algorithms
yield the final node much quicker than a breadth-first search of every node. The usefulness of the directed graph
approach we discuss is the increased flexibility of its structure compared to that of a tree. Unlike a tree, one can
start concurrentiy at several different places within a graph. In addition, changing the starting node is not just a
superficial improvement like jumping to a lower node in a tree. Assuming the graph is connected and that each
vertex is reachable, the whole classification space can be searched from any node, which is not the case for a tree.
However the order of a graph search can vary significantly, sii.ce it is stronglv dependent upon the starting node. If a
crude estimate can be made about the approximate location of the unknown input class within the graph, starting
nodes can be picked in that general neighborhood. This will greatly reduce the search time required to examine the
whole classification space. We discuss this in Section 4.4.5 and in Section 6.

A major benefit of the directed graph approach is the ease with which new classes can be included in the graph.
Adding a new class to a tree is restrictive, since additional nodes can only be affixed to terminal nodes or leaves of
the tree; otherwise the whole tree must be redesigned. The interconnections of a graph, on the other hand, can be
extended to incorporate new nodes quite easily. Once a graph is modified to include a new class, classification of
objects of that class occurs as routinely as for objects in the original classes. Details of this procedure are given in
Section 4.

There are a number of pitfalls of varying severity than can be encountered in a directed graph classifier
procedure. These include:

1. Disconnected subgraphs within the graph. This could make proper classification impossible, unless
perturbations are included (as we suggest and detail} or unless the interconnection of the graph (as we
detail) are designed properly.

2. Vertices within a given subgraph with indegree equal to zero. The problem is that a vertex with an
indegree of zero is unreachable from any other vertex and could only be located if it was declared as a
starting node. The choice of starting vertices should include some of these nodes. Our graph synthesis
method and our perturbation step overcomes this problem.

3. Local maxima. The unknown class is theoretically reachable from the starting node, but is not fouud due
to the presence of local maxima in the maximum-ascent approach. Rather than backtracking, we employ
perturbations to overcome this problem.

4. Circuits (cyclic paths) within A. A circuit exists whenever a diagonal element of E is non-zero, meaning
that a node is reachable from itself. Since a maximum-ascent algorithm can never return to the same
point while still traveling uphill, a circuit is actually a redundant structure which can never be utilized
but could reduce the processing speed of a classifier. For a completely connected graph, circuits are




unavoidable. Since every node is reachable from every other, a parent node must be reachable from its
neighbor nodes. This requires the use of many circuits. These circuits should be as long as possible,
reserving shorter paths for realizable traversals. Shorter circuits will increase the average search time
since they force more useful paths through the graph to be longer in length.

Our directed graph processor: uses perturbation, insures connectivity and reachability and long circuits, and it
employs hard decisions (rather than simulated annealing techniques) to overcome these potential problems. A
recurring problem in large class searches is local maxima.? Our two solutions to this problem are now noted.
Backtracking is included in our graph by including a working memory with the prior node (not taken) with the
largest correlation. Perturbation is included in our graph algorithm, by allowing jumps to new graph regions or
prior high-correlation nodes. We prefer hard decisions to simulated annealing (which allows moves to less optimal
nodes to occur with finite probability, depending on the correlations or VIP values obtained) to reduce the search
space and search time. The high threshold 7 we employ also facilitates correct classification (we adjust 7 depending
upon the number of image pixels and the amount of noise expected).

For pattern recognition applications requiring distortion invariance, we will generally employ a distortion-
invariant feature space, using optically generated features.'? For high-clutter and multi-object cases, we will utilize
optical ccirelators. When distortion-invariance is required in this latter case, smart correlation filters are utilized.!3
For more advanced problems, symbolic correlators are utilized.!* 1° We emphasize the general knowledge base
structure and interconnection (hence its relevance to associative processors, neural processors, and to procedural
knowledge rules as well as implicit declarative knowledge inference machines). We use the general term correlation
to refer to the use of the nearest neighbor filters per graph node in a correlator or the use of VIPs on input feature
vectors. The use of multi-class SDF feature extraction filters!® to test the M nearest neighbors per node is not
recommended (for this large class case considered) since unknown (untrained) inputs per node can produce erroneous
results. Thus, the discriminant vector or filter used per node in the graph is that due to the one class considered at
that node (this filter can and in many cases is a single class SDF). This filter choice yields better hign-confidence
results, which is our goal (versus simulated annealing).

4. CONSTRUCTION AND USAGE OF A DIRECTED GRAPH CLASSIFIER
4.1 PARALLELISM AND MULTI-PROCESSORS

In order to build a directed graph classifier, the outdegree M of each node must be selected. Af is often selected
depending upon the parallelism possible in the processing architecture. If Af=1, a search through the graph would
be entirely sequential. If the number of nodes is L, the search time would then be on the order of LT, where T is the
time required to perform the one correlation at each node.

For cases when M > 2, the number of nodes which must be searched (A comparisons per node) in an *optimal*
complete directed graph is on the order of (logM L), for L>M1% With A nodes checked at each level, an optimal

L-class classifier will require z levels, where L——-—Z:::l A/!'.=(1\Ix+l—1)/(;’\v{—1) nodes, i.e. L(M—1)=A**! Taking
the log, , of both sides gives log, L+log, (M—1)=z+1. Assuming M1, then logM(Arl—l)zl and we find r=log, L.
This assumes that the graph is laid out such that every node can be reached by exactly one path of length logML or

less. A graph which satisfies this condition from any set of starting nodes is very difficult to obtain. A graph
efficiency v < 1 shall be defined as the inverse of the factor by which the actual search time exceeds the optimal
search time of log,, L. Thus,

1
Search time =0O(~log, L)=0O(log,~ L). (2)
v

7 1s a measure of the interconnectedness within a graph. Large v is preferable Tt ic verv dependent on the size and
structure of the graph, as well as the starting nodes chosen. We expect v to decrease as L increases. If the decrease




is not too rapid, good performance will still result. Graphs with many short circuits generally have poor
interconnections and will have low values of 4 and lenger ciassification times. Conversely graphs with few short path
length circuits will have higher ~ values and faster classification times. A trade-off must be reached to allow for
sufficient interconnections while keeping the classification speed high.

For a sequential (or single channel processor) system, the processing time at a given node is equal to the time it
takes to correlate the input with the node’s M neighbors, which is equal to MT. Therefore, the total processing time

is O(-MT log,, L). Since L and T are constant, this optimum M is obtained by minimizing the processing time with
1

respect to M for M > 2. Assuming < is independent of M, we find the minimum total search time for a sequential
one processor system when M=2. This result is faster than the prior M=1 case.

If a parallel processor {or multi-processor system) which can perform N correlations concurrently is used, the time
required per node is O{(nT), where n is the lowest integer such that n > (M/N) and T is the processing time to

1
perform the N concurrent correlations. The number of nodes which must be searched is still O(; log, . L). The

minimum processing time is found by minimizing -nT logML with respect to M, which occurs when M=N assuming
v

~ is not a function of Af. Therefore, optimal classification speed for parallel multi-processors occurs when the
outdegree M of each node is equal to the number of processors (i.e. the number of correlations or node VIPs which
can be performed concurrently by the parallel system). We use the term correlation to refer to the operation
required at each of the Af neighbor nodes. This can be a vector inner product (VIP) for the case of input features
and some symbols. It can be a 2-D correlation for the case of iconic (image pixel) input data.

A similar analysis shows that the same value of Af also represents the optimal number of starting or initial
vertices for a given architecture.

4.2 SELECTION OF M NEAREST NEIGHBORS

The construction of the graph from initial data and the updating of the graph for new data are analogous. For L
input data column vectors x,, their similarity is described by the VIP matrix R with elements r(i,j)=E[s..Ts)] for

1,7 < L. We normalize R by weighting it by w to obtain Rm=wTRw, where w is a column vector with elements

w(i)=[}:;=] 8).(]')2]—1/2. Normalization by the difference between the input data vector and the mean data vector is
also possible. The weighting by the inverse of the magnitude of the data vector produces R with diagonal elements
equal to 1 and all other elements less than one. This presents a vector with a high magnitude from dominating the
correlation results!” while still retaining a positive-definite nature matrix for R. From R . one can produce an
adjacency matrix A with elements

1 if r(1,7) is one of the Af largest elements in row 1 of R 15

ati )= { (3)

0 otherwise.

The provision that ¢ 3£ j prevents single node loops in A. The reachable extent matrix E can then be determined
using Eq. (1).

From tests, we find that A computed from Rm by Eq. (3) alone yields a well-structured graph of nearest-

neighbors, but is not necessarily a well connected graph. This is especially apparent when one considers a multi-class
problem where there are Af+1 very similar classes. Using the above procedures alone, these AM+1 classes will form
an isolated subgraph, unconnected from all the remaining nodes. We thus use Rm to assign outgoing nodes and a

more detailed procedure (detailed below in Section 4.4) to provide incoming nodes and the connectivity of the graph.

4.3 DEFINITIONS




The following definitions will be used in subsequent analysis:

1. L is the number of classes currently represented in the gtaph;

2.L . is the maximum number of classes (nodes) permissible in the graph. It is upper-bounded by the

memory constraints of tne system,;

3. M is the maximum outdegrse permissible for ai.; node; it is determined by the degree of parallelism in
the processing architecture (the number of channels which can be processed concurrently);

. x is a column vector representing the new original input data;

. x' is the normalized data vector for the new input data;

.8, 8 <L isthe normalized data vector (discriminant vector) of class i (i.e. at node 1);

. 7 is the acceptable threshold which must be exceeded for a match to occur between the input and a given
class;

v, is the node currently being examined;

N O

o0

9. v| is a new node being appended to the graph;
10. C{i,9), i < L .. 7 < M, is the yth highest element in the i-th row of F,_;
11. K(1,3), ¢ < L .. 3< M, is the column number of the jth highest element in the i-th row of R _;
12. I(1), i1 < L .. is the indegree of v;
13. E(5,7), 15 < L .. is the (i,7) element of the reachable extent matrix;
14. Z(i),0 <+ <L .isan L _ +1 element work array containing the result of correlations or VIPs of x'

with previously stored classes (representcd by si),

The matrices € and K are actually abbreviated versions of R and A, respectively (containing their largest

eiements}. The i-th tow of K contains the column numbers 7 where a{i,7}=1. Similarly, the i-th row of C contains
the elements of Rm corresponding to the same locations where a(t,5)==1. The C and K matrices reduce the storage

requirements by a factor of L/Af.

4.4 OPERATION

Figure 2 illustrates the basic operation of a directed graph classifier. The input data x' is normalized and (if
required) distortion invariant. An initial threshold r < 1 is defined to determine whether an acceptable match has
been found -t each rade  We mak. - Lizh encugl se thot distinet classus will not be categorized together and yet
not so high that any noise in the input will inhibit proper classification and {orce the graph to create a new class.
With low noise expected, one should set r conservatively high. Then, even minor deviations in a prior input will
cause the graph to think of the input as a new class. As the number of classes grows and approaches L . the
threshold is lowered, similar nodes (classes) are combined and the graph is restructured. This forces a new
egmeatation of the data. This will enable the classifier to adjust 7 to the actual problem set. while controlling the
number of nodes in the graph. The input data can be time sequential scenes, objects, nr the contents of a knowledge
base. Assume that the input will be a sequential stream of class data including noise and possible distortions. The
steps of the algorithm for synthesis or use of the graph follow.

4.4.1 Initialization of the Graph

1. Initialize all matrices to zero.
2. Preprocess the first M input data vectors x_, yielding x"..

3. Since we started from a zero-class classifier, these M vectors are stored as the first A nodes 5, (for

1+ < M) in the graph. They are used as the initial starting vertices. L is set to M.

4 4.2 Classification of New (Subsequent) Input Data Vectors (Iterations)

This iterative procedure applies in general when the graph contains more than Af nodes.
I.
a. Preprocess the input data vector to yield x'.
b. Correlate x' with each of the starting vectors in the graph. Set the current node v, to the vector

r

with the highest correlation with %/, and store the correiation as Z{0) = ma:qx'Ts,.], for all 1 < AL

Z(0) is the current maximum correlation.
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directed

d. Look for the highest correlation among the neighbors of v

graph classifier node to a directed graph classifier

c. Correlate x' with the Af neighbors of v found in the matrix K. Store these results in

2K = xTop o
of the current node could be neighbors of previously searched nodes, in which case their correlations
would already have been calculated and stored in Z. Recalculation of them is not necessary.

If this is greater than Z(0) then set Z(0)

for ail ¢ = ni. These calculations are rot cxcessive. Sama Af the neighbors

equal to it, set v_to that node, and repeat step c.

e. At some point Z{0) is greater than the correlation at any of the neighbor nodes. If Z(0) > r, then
the input is classified as belonging to the class represented by v, Classification of the input is now
complete and the next input vector can be classified. .

f. If Z(0) < r, we recognize v asa local maxima of the graph. In the case of construction of the

graph, we examine all nodes, using backtracking or perturbations (to new graph areas or to prior
nodes with a high Z. ie. perturb or jump by backtracking). We now briefly discuss three
techniquesg to avoid being trapped in a local maxima. They generally apply to use of the graph,
rather than construction of it.

Back-tracking® This involves going back to a previous node and taking an alternative rou‘e. This
technique can avoid searches for poor solutions.

Perturbation: This technique permits random jumps to unsearched nodes of the graph.




in operation, we prefer (in order of preference) to: (1) jump to the next largest starting node (if its currelation is
close to that of initial node chosen), (2) jump to an alternate neighbor of a prior node, or (3) perturb to unexamined

Simula.e. anuealing: This is a non-deterministic searching process which allows *downhill* ruther

than  uphill* moves to occur with a small (but finite) probability, depending on the ratio of the
.a vector’s correlation with v and each of the neighbors of v

areas of the graph.

These searching techniques in steps (a) to (f) continue until a match is found or until every node in the graph has
been searched. This procedure is much faster and easier than might appear.
hence the number of nodes searched) is Oflog, L} and the memory is O(L).

correlation exceeds 7 then a new node must be added to the tree. The procedure is outlined in Section 4.4.3.

4.4.3 Addition of a New Node

This step outlines how a graph can be modified to include a new class.

shown in Figure 3. Its steps follow.

1.

a.

e.

Increment L, the number of classes stored in the graph, by one. If L Lmu‘ reorganize the graph

as in Section 1.4.4. If not, proceed as below.

Store x' in 5. This is the data vector for the new class, which will be represented by v, in the

graph.

Add M outgoing arcs from v If Z(1) is the fth highest element (1 <7< Af} in Z, then sct

L

C(L.))=2(i1) and K(L.j)=1 and increment /(i) by one. This establishes arcs emanating from v, to

L
its M closest neighbors as set by R . These new neighbors will be referred to as forward neighbors.

This establishes the outdegree of v, as min(L,Af).

Establish ingoing arcs to v This step requires certain precautions to maintain connectivity and
q )

L
reachability. We require that every node have a non-zero indegree. This implies that the scle
Ingoing arc to some node v, cannot be broken to establish an arc to v, unless v, in turn has v asa

forward neighbor, re-establishing connectivity to . This will force the graph to be connected.

while also preventing subgraphs. We achieve this in an ordered manner as follows.

1. Check all previous nodes to see if an arc should connect any of them to v, 1.e.1f v, correlates

L
well with a prior node (better than some prior arc). To retain the graph’s symmetry. this

requires that Z(0) .~ C(1.Af) for some v To guarantee coniectivity, v, must still be reachable

from v, without the arc v, — URGAR" (i.e. another way must exist to reach the node whose

ingoing arc was broken from rl). Reachability is found using a modificd A matrix where
a(t. (1. A):=0

ii. If step i returns a positive result for some v, the arc connecting v, to Upi ap €30 be broken
and replaced with one connecting v, to v The reachable extent of v, and the connectivity of
the graph will not be adversely affected. C{1,Af) and K(¢, M) are changed to Z(1) and 1.
respectively. The i-th row of C and K is now sorted to accommodate the new data. This
step is repeated for all r, which apply

ii. If no ingoing arcs to v, are formed using the above steps, meaning that /{L)=0. we must still

L
force a connectioi. This is most conveniently done by breaking an arc from some other node

that also has an ingoing arc to a forward neighbor of v, The forward neighbor with the

highest correlation is the best choice. The arc is then reconnected to the new node v, as

outlined in step ii. This will maintain the graph's connectivity at the cipease of potential
small drops in the graph’s classification space when searching for particular classes.

The reachable extent of v is stored in the L—th row of E. It is equal to the union of the sct of the

neighbors of v, with the set of all nodes reachable from those neighbors. This means it ts unity n

any column j where IK(L.j) =1 or E{K(L.k).)) for any k- L.

The number of steps required (and
If the entire graph is searched and no

A block diagram of the procedure 15




4 4.4 Reorganization of the Graph

If L exceeds Lm“, the graph has outgrown the algorithm. The threshold 7 must be lowered so that new classes
are not encountered as frequently and such that old prior classes can be merged. The following procedure lowers L
by one node, merging several prior nodes and reorganizing the graph, while still retaining the graph’s connectedness
It can be used repetitively until L < Lm

1.

ar’

a. rshould be lowered so that it is equal to the highest value of the first column of C.

b. Merge the node v, which satisfies C(7,1)==r, with node Uge( The data vectors of these two nodes

1)
can be averaged together to create a new discriminant vector representative of the two merged
classes.
c. All arcs to v, and Ugqia) AT broken and .eplaced by arcs to other existing nodes. This step is

equivalent to removing the t-th and K{(i,1)—th columns of both A and R. This could potentially
effect the connectivity of the graph. If this occurs, the replacement arcs should be chosen so that
the connectivity is re-established.

d. The indegrees of all the forward neighbors of v, and 1% are reduced by one. This removes the

(i,1)
i-th and K{7,1)~th columns of C" and A. At this point, both v, and v
graph.

e. The merged node is now added to the graph using the procedure outlined in Section 4.4.3.

Kia) 3F¢ removed from the

4.4.5 Multiple Initial Starting Nodes and Meta-Vertices

To improve the connectivity and reachability of all nodes in the graph, meta-vertices can be established. These
vertices are not class nodes, but are used to connect subgraphs (isolated from the graph). These nodes slow
processing and search time and are avoided in our graph synthesis algorithm. We mention them as a possibility for
severe cases.

At the initial input to the graph, we enter the graph at A points (since we have A processors. we use them at all
levels, i.e. at the initial level also). For this case, meta-vertices are useable (cr other key or parent vertices) as some
of the initial choices for the M starting initial nodes.

5. OPTICAL IMPLEMENTATION

Optical architectures are very appealing for this algorithm since they can easily perform the feature extraction
and required correlation operations in parallel. One architecture to achieve the M correlations (or VIPs required per
node) in parallel is shown in Figure 4. In this figure, the preprocessed input data vector x' is applied to a single-
channel acousto-optic (AO) cell.  The cylindrical lens L1 vertically replicates the data vector across the correlation
plane where a spatial light modulator (SLM), such as a multi-channel AO cell, is placed. The spatial light modulater
contains one data vector on each of its rows. The projection of x’ onto each of these rows produces the point-by-point
product of every component of x' with the corresponding components of the data vectors stored in the SLA{
Another cylindrical lens (L2) sums these products across each row, producing the vector inner product (VIP) of x’
with each data vector stored in the SLM. L2 focuses the correlation results on a linear detector array. where they
are fed to an external controller.

The controller is responsible for loading the SLM with the necessary data vectors to traverse the directed graph
It initially loads the SLM with the starting vertices of the graph. It then detects the highest output and assigns oA
that node. The neighbors of that node are loaded into the SLM, and the process continues until the input 1
classified as either an existing class or a new class which must be accommodated in the graph. Other optical
architectures (such as ones with input point modulators, a one-channel AQ cell. and N 1-D time integrating detector
arrays are also viable alternatives). Variations of each system to allow high-accuracy encoded data processing are
also possible. In Figure 4, one would input an encoded description of cach element. perform a high-accurary
multiplication (by convolution), and continue for the next vector element.
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The hybrid architecture of Figure 4 and its variations use the best of two different technologies: optics is used to
handle the heavy computational burden, while digital memory provides the storage of the data vectors and the
graph’s A, C and K matrices. Such a system is suitable for very large classification problems as we now quantify.

The key component of this system is obviously the SLN. As shown, maximum classification speed for a parallel
directed graph classifier is obtained when M is set equal to the number of correlations which can be performed
concurrently. Therefore, M is set by the number of data vectors which can be stored in the SLM. For example,
consider a 16-channel AO cell as the SLM, with digital hardware capable of loading the cell at a 16 Mbps rate (1
Mbps per AO channel). This would allow Af=16. A 50-long vector with 8-bit resolution for each vector component
could thus be passed through each cell in 0.4ms. This will be the time T requircd to perform the parallel
correlations. The controller synchronizes the SLM data with the input data. Since T is greater than the propagation
time through the multi-channel AO cell, the system performs time integration in 7=0.4ms per node searched.
Assuming a total of 2!? classes (L=4.096). the average time for classification would then be O(T log, L)=1.2ms.
Here we see that the penalty for back-tracking is the addition of T (a 30% increase) for each back-tracked step. The
digital memory requirement for this example is approximately 0.5 Mbits.

Another alternative is a liquid crystal SLM, which presently offer resolution of about 100X 100 at video rates (30
Hz) with 32 grey levels (5 bits/pixel). The processing time T per node is now 33ms, which yields a much slower
classification time than the multi-channel AO cell case. Projections have been made for improvements in all of these
figures, notably an increase in its frame rate to 1 kHz. Such improvements would be necessary to make liquid crystal
SLMs feasible for such a system.

6. DIRECTED GRAPH CASE STUDY

The algorithm was tested using standard 5X9 dot-matrix alphanumeric characters in 62 classes ("A" through 'Z",
'a’ through ’z’, and 0’ through ’9’). Samples of the characters are shown in Figure 5. Each character was described
by a 64-element binary vector, which was obtained by taking each row of the character and making that the next
five elements of the data vector. The remainder of the vector was zero-padded. The number of forward neighbors
for any node was chosen to be Af=4. The graph was built one class at a time, using a threshold r of 0.99.

Figure 6a illustrates the initial 5 class graph and the resulting graph when the «ixth node ('F’) was added to the
five-node classifier. This was done by first adding outgoing arcs from 'F’, then by determining what arcs should be
broken to make ingoing arcs to 'F’. First outgoing arcs were made from I’ to the four nearest neighbors which had
the highest correlations with F’ {in this case 'A’, 'B’, 'D’, and 'E’). Next, ingoing arcs to ‘I’ were established by
checking each of the five previous nodes to see if '’ correlated better than a given node’s lowest correlation
neighbor. If this was the case for some node and if its lowest neighbor was jeachable from 'F°, then that arc was
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(a) the five-class graph ‘A’ through 'E’ (b) the six-class graph ‘A’ through 'F'
Figure 8: The Addition of Node 'F to the Five-Class Graph (’A’ through 'E’)
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Figure 7: Meta-Vertices Masks used (Number of Pixels Per Quadrant) for Initial Input Node Tests
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Table 1: Directed Graph for a Character Data Base
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broken and replaced with an arc to 'F’ (Figure 6b). Table 1 shows the adjacency matrix A (with its elements noted)
for the actual graph obtained. Each row of the matrix shows the neighbors for the particular character in the left
margin.

A meta-vertex was used at the starting node. It consisted of the four masks shown in Figure 7, which simply
counted the number of "on" pixels in each quadrant. For this problem the optimum number of nodes to be
examined (on the average) for classification is {16X2+(62—16)X3)/62=2.74, where examining a node refers to
examination of its M==4 nearest neighbors. This value is simply the average of the path lengths given an *optimal®
graph. The actual value obtained in tests on these data was 5.27, yielding the graph efficiency v=0.52. While the
efficiency may seem low for this particular example, one should remember that ~ reflects the interconnectedness in
the graph, which is achieved at the expense of some classification speed. More research is required to determine the
effects of various system parameters on 4. Without the input initial meta-vertices, performance was much worse (an
average of about 8.5 nodes per search).

7. CONCLUSIONS

An algorithm has been presented to model a large-class problem or large knowledge base as a directed graph
classifier. It is shown that the classification procedure can yield the object class quite well. The proposed algorithm
can also be used to iteratively synthesize the graph one class at a time, while maintaining the graph to be connected
and all classes reachable. Our algorithm allows the classifier to easily accommodate new classes, and it is especially
suitable for parallel processing architectures, such as optical systems. Initial results were most promising. This
concept appears to have use in many new optical Al concepts.
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Rule-based symbolic processor for object recognition

David Casasent and Abhijit Mahalanobis

The application of symbuolic processing and rule-based methods for target recogmition using correlation filters
is considered. The concept of partitioning images is introduced, and its advantages are described. Tech-
niques for rule development, symbolic substitution, error correction via assuciative processing, and on-line
filter adaptation are advanced. Initial simulation results are also presented and discussed.

l. Introduction

A. Background

The use of spatial filters for the automatic recogni-
tion of targets has been widely studied. Typically,
such filters are synthesized to recognize complete ob-
jects. Inthis paper, we address the possibility of iden-
tifying targets by parts (i.e., by partitioning the input
image), and by symbolically analyzing the partitions
simultaneously.

The fundamental idea is to generate a symbolic de-
scription of the input image using spatial filters (also
referred to as correlation filters).! Separate filters are
synthesized for different spatial regions of the compos-
ite set of training images. A composite filter of all
objects (with the spatial relationship between seg-
ments preserved) is formed. It isthen correlated with
the input to obtain a symbolic or multibit code descrip-
tion of the input object. The K-tuple synthetic dis-
criminant function (SDF) investigated in previous re-
search? also yields a multibit output code. However
the prior K-tuple SDF differs from the scheme pro-
posed in this paper in one important aspect. Unlike
the correlation filters employed for symbolic process-
ing, the prior K-tuple filter systems are synthesized
from entire training images. The advantages of our
new proposed scheme will be discussed shortly.

Some relatively simple 3-D objects such as aircraft
can be numerically modeled on a computer.3 Most
aircraft are a collection of generic parts whose dimen-
sions differ from model to model. Computer algo-
rithms can efficiently generate the images of most
aircraft parts and combine them to produce realistic
images of existing civilian and military aircraft. This
is possible mainly because the number of aircraft parts
is small, because aircraft have a consistent set of gener-
ic parts and because they can be modeled by simple
geometric shapes such as cones, cylinders, and planes.
Hence correlation filters can be synthesized for various
aircraft parts, and the target class be identified on the

The authors are with Carnegie Mellon University, Department of
Electrical & Computer Engineering, Center for Excellence in Opti-
cal Data Processing. Pittshurgh, Pennsylvania 15213.

Received 27 March 1987,

(MM3-6935/87/224795-08%02.00/0),

© 1987 Optical Society of America.

basis of those parts which are visible in the input
image.

A category of objects such as tanks is more difficult
to model because the number of variations in struc-
ture, shape, and size is very large. Computer pro-
grams for modeling tanks exist! but result in very
specific models for each tank. It is difficult to obtain
images for individual tank parts from computer mod-
els and thus correlation filters synthesized from tank
parts are not easy to assemble. In this paper, we
propose an alternative scheme based on spatially par-
titioning training set images .hat serves the same pur-
pose of recognition by parts for more complicated ob-
jects such as tanks.

B. Practical Motivation

As stated in Sec. 1A, it is conventional to synthesize
distortion-invariant linear combination correlation fil-
ters from complete training images. However, prob-
lems may arise when parts of the object are absent or
invisible either due to occlusion by artifacts in its
natural environment (such as foliage, terrain, camou-
flage measures), noise in the input. temperature varia-
tions when an infrared imaging sensor is used, sensor
malfunction, and a host of other possible reasons. In
situations where the entire target is not visible, it is
preferable to identify its observable parts and from
these logically deduce its class. Analogously, one can
determine the more reliable parts of the object and
give them more weight than other parts. Qur pro-
posed svmbelic processar is motivated by this set of
practical considerations.

The inference of object class from a study of the
visible object parts requires “abductive reasoning."®
Formally speaking, abductive reasoning involves the
establishment of pertinent facts to infer a new fact.
Since more than one answer is often possible, abduc-
tive reasoning must also yield which answer is the best.
To make decisions of this nature, we must weigh the
available evidence. To do this, we must know how
strongly a fact weighs for or against a conclusion, and
how to combine the pieces of evidence into a final
conclusion. To gain evidence, it is necessary to obtain
prior and conditional (a posteriori) probabilities. A
technique to achieve this will be discussed in futher
detail in Sec. V.

An expert svstem is often defined as a rule-based
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application program for performing tasks which re-
quire expertise. While there is no necessary connec-
tion betw(-  expert systems and abductive reasoning,
most expert systems perform abductive tasks. Con-
versely, most of the standard examples of programs
which do abductive reasoning in the presence of uncer-
tainty are expert systems. With these considerations,
we can refer to the proposed rule-based scheme as an
expert system.

The definition of the problem is given in Sec. I, and
the concept »f dividing an image into partitions is
explained there. The various considerations for corre-
lation filter synthesis (i.e., their size, number, output
assignments, and training sets) are discussed in Sec.
ITI. A statistical motivation for the proposed scheme
isadvanced in Sec. IV along with illustrative examples.
Section V is a description of the rule-based symbolic
processor, and how expertise and evidence are incorpo-
rated into the program. Initial test results are report-
ed in Sec. VI. A summary of the paper is given in Sec.
VII.

i. Problem Definition

We wish to design a system capable of identifying,
recognizing and classifying objects in the face of 3-D
distortions. Our case study is confined to a tank and
an armored personnel carrier (APC). However, the
basic concept has far more generality. The filter is
intended to achieve aspect-invariant distortion invari-
ance. To provide this, we employ training images (of
the target objects at several different aspect views) as
detailed elsewhere.! We partition these input train-
ing images into several subimages, and synthesize cor-
relation filters for each partition. The goal is to use
correlation filters to generate a multibit multiple filter
description (or symbolic code) for each object for dis-
tortion and shift-invariant symbolic object classifica-
tion.

Once representative images of each object have been
selected for training the correlation filters, these train-
ing set images are partitioned into M k& X k pixel
subimages or partitions. We assume an input object
resolution of d X d pixels. Thus,

Fig. . Partitioning scheme for complete images.
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Table l. Terms and Definitions tor Fiter Synthesis

Term Definition Value
d 1-D Image dimension 32
k 1-D Partition dimension 8
M Number of partitions 16
N Total number of training images 12
M- k*=d* (1

We use the symbol w;; to denote the ith subimage of the
jthtraining image. ‘Thereforel <i<Mand1<j<N.
The terms partition and subimage will be interchange-
ably used in this discussion.

We propose that correlation filters f; be synthesized
for each partition, 1 <t < M. The filters f; are as-
sumed to be functions of the training subimages w,, {for
all j) and to be of dimensions & >( k. The correlation
filter synthesis procedure is not important for the dis-
cussion in this paper. We use minimum average corre-
lation energy (MACE)S filters in our work because of
their time and memory efficient synthesis, .ad iheir
ability to form good correlation peaks.

. Criteria for Filter Synthesis

In this section, we discuss relevant synthesis criteria
such as the designation of filter outputs and the selec-
tion of training sets for the filters. The proposed
scheme is best described by means of the diagram in
Fig. 1.

We use sixteen partitions (M = 16) in our work. The
outputs from the corresponding sixteen filters are col-
lectively denoted by the 16-element output vector v.
The layout is shown in Fig. 1. The image is divided
into sixteen subimages, each of which is a partition.
The partitions are numbered from 1 to 16 as in Fig. 1.
The training set of the filter f; (1 <{ < 16), correspond-
ing to the ith partition is simply the collection of the ith
subimages in all complete images in the data base.
The training set for the tth filter is represented by ¢, =
fwid = 1,. . N}

The data base chosen for our work consists of six
complete images of the tank and six images of the APC.
The images were taken at a depression angle of 60° and
were evenly spaced every 60° about the normal. Since
there were six images per class, the training set ¢, for
each filter f; included 2 X 6 = 12 subimages w;;, 1 < j <
24. The data base i:nages were 32 X 32 pixels (i.e.,d =
32). Since M = 16, we select k = 8 to satisfy Eq. (1).
The four synthesis parameter values for d, k, M, and N
are listed in Table 1. The entire data base contains
seventy-two images, thirty-six of the tank and thirty-
six of the APC, each image being a different aspect
view with 10° increments in aspect angle used.

The desired filter outputs must also be specified for
both classes of data. Two choices for the filter outputs
are shown’in Figs. 2(a) and (b). These were used for
the tank and the APC, respectively. The value (10r0)
in each square in the correlation outnut represents the
output of the corresponding partition of the filter.
Thus, as seen in Fig. 2(a), the sixteen filters f, yield an
output of 1 for odd val._.» I/ (and 0 viherwise), when
the input image is a tank. This output vector for the




tig. 2. {(a) Partitioned output pattern for tank; {b) partitioned

output pattern for an APC.

tank is denoted by v;, which is obtained by lexico-
graphically ordering the elements of Fig. 2(a). Simi-
larly, Fig. 2(b) shows the desired ouiputs for an APC
input. The corresponding output vector is denoted by
v.. If the filter outputs are set to be v, or v for each
target class for all images in the data base, the output
vectors v, and v, are invariant to 3-D distortions of the
tarcete to he clacsificd.  During filter synthesis, we
specify that the training set objects have these two
output patterns. Thus, we achieve a unique 16-bit
symbolic correlation output description for each input
object.

The Fourier transform of the filter f (with M = 16
outputs as shown in Fig. 2 in the space domain) is
synthesized as a matched spatial filter in the frequency
domain of a frequency plane correlator.” This pro-
duces one filter with each of its M = 16 partitionson a
different spatial frequency carrier (with frequency
proportional to the subimage’s location in the filter).
The correlation output for such a filter vields a 4 X 4
array of correlation values (a 16-bit symbol) for each
occurrence of a tank or APC in the input. The symbol-
ic pattern of Fig. 2(a) will result when the input is a
tank and the pattern in Fig. 2(b) will result when the
input is an APC. The spatial location of the pattern
denotes the object’s position in the input image plane.
Thus, one uses such a correlator in the conventional
manner but searches the correlation plane for specific
4 X 4 symbolic patterns, descriptive of different ob-
jects.

IV. Statistical Motivation

A statistical motivation for the proposed scheme
may be gained from the following considerations.
Typically, the pattern recognition schemes that use
correlation filters have a high false alarm rate. The
problem of false alarms has not been addressed fully
and is an important topic for future research. In this
paper, we briefly describe a potential solution to the
problem, but will defer the details of the analysis to a
future publication.

Consider a single correlation filter employed for tar-
get recognition. When the correct object is present at
the input, the output correlation peak is at a user-
specified value. This is true provided the filter is
distortion invariant (one approach to this is to make
the proper choice of the training set images). The
value of the output peak determines the class of the
input image. Unfortunately, it can be showi, that an
infinite number of images exist that yield correlation
peak outpuis exactly equal to those specified during
filter synthesis by the user. Thus, even in the absence
of any target, the filter may output correlation values
equal to or close to those specified for targets and
thereby give rise to false alarms. Decisions based on a
single filter are hence unreliable. Informal terms, the
constraints imposed during filter synthesis are neces-
sary but not sufficient for target recognition.

It can be shown that the simultaneous use of more
than one filter reduces the false alarm rate. The si-
multaneous use of muiiipie filters (such as the K-tuple
SDF) has been suggested in previous research (al-
though not for these specific reasons). Our present
scheme based on partitioned images achieves a lower
false alarm rate because more constraints have to be
satisfied simultaneously. As stated earlier, we do not
provide a detailed analysis in this paper. However, we
now offer intuitive insight into the problem and its
solution.

In the following, we shall represent a d-dimensional
vector space S and its subsets S, by plane figures as in
Fig. 3. The plane S represents the whole set of possi-
ble images that could ever appear at the input of the
correlator. Assume that a filter f; is synthesized such
that an output of u» is obtained whenever the target is
present at the input. Since images other than the
target exist that yield an output u,, we denote the
subspace of all such images by the region S,. Thus all
images inside S, are potential sources of false alarms
with the filter f;. Now assume that we employ M
filters f,, 1 <i < M. For each filter f,, there exists a
subspace of images S, (similar to S;) that yield false
alarms. All images in S, thus satisfy the constraints
imposed on the filter f, during synthesis. The M sub-
spaces S, for the M filters are shown in Fig. 4. By
definition, all these subspaces must contain the train-
ing set images, and hence must have a nonzero inter-
section I. Moreover, an image must belong to this
intersection to simultaneously satisfy all M filters.
For a multifilter system, a false alarm is said to occur if,
in the absence of a target, all M filters output correct
correlation values. Therefore for a false alarm to oc-
cur with multiple filters, the input must yield M cor-
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Fig. o Domain 8y ot false glarm images in the space S of all images
ttor the case o a single filter).
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rect outputs simultaneously. Orly images in the in-
tersection region _ave this property (since imagesin/
bv definition yield correct outputs for f,,fo,. .. f).
Thus images that cause false alarms with M filters
must belong to the intersectionset I. From Fig. 4itis
evident that the number of false alarms is less for M
filters (than for any single f;) since the intersection [ is
smaller than any of the individual subspaces S,.
Moreover, the intersection becomes smaller as the
number of filters (and hence the number of subspaces
that must intersect) increases, indicating a diminish-
ing false alarm rate for a larger number of image parti-
tions.

The information in Fig. 4 can be interpreted in terms
of the probability of false alarms. It can be shown, in
rather general conditions, that a system using filters
synthesized from complete images (without partition-
ing the data) has a higher probability of false alarm
than a system employing multiple filters. The sym-
bolic and associative postprocessing we perform allows
flexibility in assigning objects to a class when the inter-
section region I in Fig. 4 becomes too small for a given
eot of data.

V. Probabilistic Rule-Based Recognition

In this section, we describe criteria for basic rule
formulation for the recognition of targets using the
output symbolic vectors v,. Guidelines are provided
for incorporating new rules into the system, via inter-
active exchange of information. The criteria for as-
signing confidence measures (probabilities) to each
decision are also discussed.

We wish to determine the conditional probability P
(Tank/lvl > T) (i.e., the probability that the input

~—

Fir 4 Intersection [ of muitiple filter domains S, for the case of
multiple Niters.

47938 APPLIED OPTICS / Vol 26 No 22 / 15 November 1987

image is a tank given the observation v where T is a
threshold value). A purely statistical solution to the
problem would be to obtain estimates for P(lv| > T)
and to use Bayes rule® to obtain an estimate for
P(Tank/lv| > T), assuming a priori probabilities for
P(Tank). However, it is generally difficult to obtain
all the necessary estimates for P(]vl > T), because of
the large number of possibilities. Thus we resort to
abductive reasoning to provide a solution.

Given a measured output vector v, the system deter-
mines a limited number of ways in which the observa-
tion could have resulted from image distortions, miss-
ing parts, etc., and the probability associated with
each. The system then uses abductive reasoning to
determine possible output filter element errors. Once
a filter output is suspected of error, its symbolic value
is altered to test for better matches with the descrip-
tions stored in memory. During system test runs, we
develop an a priori belief in specific filter outputs by
observing that some filter outputs are in error less
frequently than others. In operation the system is
then instructed to examine these more reliable filter
outputs in certain conditions and to ignore other sym-
bolic outputs. The decisions made in such conditions
(i.e., ignoring certain symbols) are assigned & lower
confidence. We now detail these techniques.

A. Rule Formation introduction

Target recognition is a trivial task if the input image
is represented ii: the data base. In this case, the out-
put vector is expected to exactly match the 16-bit
patterns in Fig. 2(a) or (b). We will refer to the proper
output vector (v; or vo) simply as the output vector v.
A simple rule for target recognition in this case is:

Rule 1:

(1) Assign the symbol A to the symbolic outputs

that are 1, and t e symbol B to outputs that are 0.

(2) If elements (1,5,9,13) and (3,7,11,15) of vare A

and elements (2,6,10,14) and (4,8,12,16) are B, the

input is a tank with confidence = 1.0.

(3) Else, if the complement of 2 is true, the input is

an APC with confidence = 1.0.

(4) Else, set error flag (1) and confidence = 0.0.

End rule 1.

This rule operates on the output vector v. We treat
the outputs 1 and 0 as symbolic values and assign them
the symbols A and B. The complement rule in step
(3) evaluates the complement of the rule instep (2). If
v does not satisfy the rule, this is a procedure error and
the flag in step (4) is used to record this fact. Sec. V.C
provides further rules and how they are learned.

B. Mulitiple Filter Banks

In a real environment, it is unlikely that input im-
ages will perfectly match any image in the data base,
since input images can be distorted by 3-D rotations of
the target or by occlusion of target parts by natural and
man-made artifacts. Our processor adapts to such
situations as we now describe.

To improve the decision making process, we employ
a set of S symbolic filters (with M partitions in each).

e
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We refer to the set of filters as a filter bank. We thus
perform the correlation of the input data with S filters.
For asingle input object, there will be S output correla-
tion planes and each will contain an M element output
vector v, {the symbolic pattern chosen).

Figure 5 shows a correlator with S = 4 multiple
correlation planes at P that are the correlation of the
P, data with § = 4 different spatially multiplexed
filters at P.. The holographic optical element (HOE)
L1 provides a spatial replication of the Fourier trans-
form of the P, data at four separate locations in P..
Four space-multiplexed filters with HOE Fourier
transform lenses are used at P.. One can also achieve
multiple correlations using frequency-multiplexed fil-
ters at P, as shown in Fig. 6. In both architectures,
each correlation plane contains a 4 X 4 spatial pattern
(the symbolic code chosen, such as those in Fig. 2) at
spatial locations corresponding to each occurrence of
one of the objects in the P, data.

In our initial symbolic processor tests, we used S = 3
filter banks with M = 16 filters in each. Each object is
thus described by three vectors v, , v, , v, , with a total
of 3 X 16 = 48 elements. Figure 6 shows the second
output vectors (v,,1) and (v,,,2) for the class 1 and 2
objects and the third output vectors (v, ,1) and (v.,,2)
chosen. Each vector pair is a vector and its comple-
ment. The advantage of using a filter bank is that an
error in one output vector can be confirmed (or invali-
dated) using the remaining S — 1 output vectors. We
now describe how rules were developed interactively to
achieve this.

C. Interactive Knowledge Acquisition

In each object class, thirty-six images (at 10° aspect
increments) exist. The filters f, for the various filter
banks were formed from six images/class (at 60° incre-
ments in aspect), i.e., using twelve of the seventy-two
possible images in the 2 classes (tank and APC). The
three filter banks were formed and encoded as in Figs.
2 and 7. The three filter output vectors v, to v,

i 4

obtained were measured and stored. Although the
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Fig. 7. Partitioned output patterns for (a) tanks and (b) APCs from

filter 2. and for (¢) tanks and (d) APCs from filter 3.

idea! symbolic patterns contain ones and zeros, the
actual filter outputs are values between 0 and 1 (partial
truth).

The program first attempts to classify the output
vectors using rule 1 (Sec. V.A) applied to all three
vectors v,,, v, ,and v,. For a decision to be made, all
three output vectors must satisfyv rule 1. If a decision
is not possible, it is assumed that errors have occurred
in the vectors that failed rule 1. The user is interrogat-
ed for the class of the input image. The three output
vectors and the user’s choice for object class are stored.
The program proceeds in this manner until this infor-
mation has been obtained on all seventy-two images.
After storing the three output vectors and the user-
specified class for all test images, the program interro-
gates the user for the number of rules that should be
used for decision making. Aniterativesearch!'is then
initiated to find these rules, such that the number of
errors obtained using each rule is as small as possible.
We now detail this procedure.

To illustrate this procedure, consider the tank im-
ages as inputs. [t is found that for thirty of the thirty-
six tank images (i.e., all nontraining set images), the
fourth element of vector v, isin error [i.e., it should be
0 asshown in Fig. 2(a), but was 1]. Itis also found that
for the same thirty test images, the seventh and eighth
elements of v, and the twelfth element of v, are in
error. Therefore a possible second rule is:

Rule 2: failing rule 1 then

(1) If all elements of v,, match except for element (4)

and v,. matches except for elements (7,8) and v,,

matches except for element (12), the input is a tank
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with probability = 0.86 (confidence = 0.79).

(2) Else: if the complement (of step 1) is true, the

input is an APC with probability = 0.80 (confidence

= 0.73).

(3) Else, set error flag (2) and confidence = 0.0.

End rule 2.

Using this rule, it was found that thirty-one out of
the thirty-six tank images satisfied the match require-
ments, and hence were correctly identified (while none
of the APC test images satisfied the rule). Thus the
probability that an image that satisfies rule 2 is a tank
15 31/36 = 0.86. This is how the probability values
noted in steps (1) and (2) in rule 2 were obtained. If
the match technique fails for the tank, the complemen-
tary rule is evaluated for APCs as in step (2). It was
found that twentv-nine APCs satisfied the comple-
mentary rule, and thus the probability for APCs is
estimated to be 29/36 = 0.80 as noted in step (2).

It is necessaryv to distinguish between confidence
and probability measures. As the number of the rule
used increases, more and more vector elements are
ignored. Since fewer symbols are taken into consider-
ation, the confidence in higher rule must be lower.
However, the probability that higher rules are satisfied
is larger, because fewer vector elements are used for
making a decision. Thus we need to compensate by
including the number of elements examined in the
expression for the confidence. This is easily done by
setting

mermber ot elements examined ,

confidence = probability x 12

total number of elements

For rule 1, we use a confidence of 1.0, since if 1t is
satisfied, we have perfect confidence (ignoring the pos-
sibility of false alarms) in the class estimate it gave.
For rule 2, the confidence from (2) is 0.86(44/48) = 0.79
and 0.80(44/48) = 0.73 for the tanks and the APCs,
respectively. Thus for low numbered rules (using
more of the vector elements), the confidence is approx-
imately equal to the probability that the rule is satis-
fied (since the number of symbols used for decision
making is close to the total number of symbols). How-
ever, for higher numbered rules, the confidence is a
fraction of the probability, reflecting the fact that
some information was ignored in making the decision.
We used five rules. The data for these are provided in
Table 1I for rules 1-5 unnd their complements 1c¢-5c.
The confidence of each rule decreases as expected and
the number of symbolic elements (out of forty-eight)
ignored increases as shown.

The procedure failing rule noted at the start of rule 2
checks the error table to see if a given rule was violated
by the output vectors. This is required for determin-
ing branch and termination conditions and is particu-
larly useful in programs with intricate feedback routes.
Since our rules have a precedence hierarchy, the proce-
dure failing rule 1s not absolutely necessary for our
present program execution. However, we included it
to accommodate the future development of the pro-
gram into a more complex rule-bused algorithm. Note
that f any one of the S output vectors does not satisfy a
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Table 1. Conlidence Values tor 3 Five-Rule System

Number of
elements enored
Rule number Class Confidence out of 48
1 Tank 1 0
2 Tank 0Ty 4
Ki Tank 0.76 9
4 Tank v 13
D Tank [EREY 17
Te APC 1 0
2 APC 473 4
3 APC (L6Y 4
LR APC 0.63 13
Se APC 047 17

particular rule, the condition for failure is set.

Using rule 1 before rule 2 establishes a hierarchy for
rule usage. If an image is found to satisfy rule 1, it is
easily classified as either a tank or an APC. However,
most images may not satisfy rule 1, and rule 2 must be
applied as a second test. This rule is estimated to be
correct 86% of the time for tanks and 80% of the time
for the APCs. This percentage probability that the
rule is satisfied is then used in Eq. (2) to obtain a
confidence measure. All images satisfying rule 1 will
satisfy rule 2 also. The purpose of the interactive
procedure leading to our five rules is to determine the
most reliable symbols and the probabilities and confi-
dence of the class estimates for each rule. This general
technique to obtain the rules to be used results in a
final set of rules that is a decision tree. The technique
used to select the symbols used at successive levels is
general and can be applied to many problems. Itisnot
domain specific. The specific rules that result will
differ for each data set. Thus the method adapts to
different knowledge sources.

We now discuss rules that use the information in one
output vector to rectify errorsin the others using a new
svinbolic substitution rule. For example, suppose
that the fourth element of the vector v, isin error fora
particular input image. The program assumes that
the part of the image in the fourth partition 1s missing,
orisseverely distorted. Therefore, it assumes that the
fourth elements of vectors v, and v, are also in error
(since the replicas of the same image are input to all
filter banks). This rule module then alters the fourth
elements of v.. and v,, and checks to see if use of the
original or altered v,, and v,, vectors vields a better
match. Both possibilities are considered, since if the
proper element value is O, it may not be altered, where-
as if its proper value were 1, it may be altered; or vice
versa, depending on the nature of the difference in the
corresponding region of the input. If altering the out-
put vectors in this manner provides a better match, the
assumption that a part of the image is distorted or
missing is validated. The input image is then classi-
fied appropriately. In principle, this svmbolic substi-
tution can be applied to more than one element of the
output vectors. This rule module would be applied to
each rule and then (if no match is obtained) the next
rule would be accessed. A straightforward procedure
can be devised toidentify which elements of the output
vectors may be in error. A major advantage of a rule-
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based recognition technique is the ability to anticipate
and correct errors before a decision 15 made !

The rules (see Table 1) with highest confidence are
invoked first, since a later rule provides a lower confi-
dence than the previous rule. We emphusize that the
process of rule generation is an off-line interaction
between the programmer and the computer. Once the
set of rules is formulated, the program stores them in
the memory for on-line access. The technique used
for generating the rules attempts to maintain a hierar-
chy, such that images that satisfy rules with higher
confidence will also satisfy rules with lower confidence.
This occurs in the present case. In general, most im-
ages will satisfy more than one rute. The decision with
the highest vote of confidence is accepted as the best
choice for image classification.

D. Associative Memory

If the confidence of the lowest rule with a match is
felt to be too small, the rule-based decision making is
deemed to be unreliable. In our five-rule svstem, we
always have a confidence of at least 0.48. However,
this will not be sufficient in most cases. Use of rules
bevond rule 3, where the confidence drops below 70%,
wili generaliv not resuit in acceptable performance.
Insuchsituations, the program resorts to matching the
v, vectors to the closest ideal output set of vectors (by
minimizing the norm of the difference between the two
vectors). Thisisanalogous to the information retriev-
al process in an associative memory. Thus, we call an
assoclative processor one that returns three vectors
closest to the computed vectors v, v _and v. . We
could use N separate assoclative processors (one for
each of the 8 output vectors) to reduce crosstalk or
interference between svmbols. With onlv sixteen ele-
ment vectors, there is considerable crosstalk. At
present, we emplov one autoassociative processor that
handles all six vectors (three per class object).

The design of associative memory processors is dis-
cussed elsewhere'! and is not reviewed here. The au-
toassociative memory matrix is given by the Moore-
Penrose generalized inverse

M= XXXy X Ry

where the six columns of the matrix X are the three v,
vectors for each class. The output vector that results
will be a minimum mean-square approximation to the
ideal data. While most errors in the input vector are
carrected by such associative processing, a few correct
svmbol values may be altered (i.e., errors can be intro-
duced by the associative processor) to achieve the
minimum error value. The error correcting capability
of the associative processor depends on the size of the
vector space, and the number of vectors stored, and is
hetter for higher dimensional input vectors. In our
case, the dimensionality of one input vector is 16,
which is relatively low. Thus dramatic improvements
are not expected. We could employ the three vectors
as one 48-element input vector and thereby improve
the performance of the associative processor. Howev-
er, our present purpose is not for the associative pro-

cessor to fully correct the input vector, but for the
combination of an associative processor and our rule-
based symbolic processor to be used. Memory size
and performance studies will determine the best sym-
bolic vector dimensionality to be employed. The out-
put vector obtained from the associative processor we
used is thresholded at 0.5 to obtain binary valued
symbolic vector elements. These resulting vectors are
then fed to our rule-based processor, which is then
checked for an improvement in the confidence of the
class estimate. Animprovement isnot always guaran-
teed since the associative processor can change correct
symbols also as noted at the outset.

Vi. Initial Test Results

We now discuss the initial performance of our rule-
based symbolic processor. A bank of three filters was
formed with symbolic outputs for 2 classes as shown in
Figs. 2 and 7 from six images per class of aspect-
distorted tanks and APCs. A set of five rules for our
rule-based system was produced. Rules 1 and 2 were
presented earlier in Secs. V.A and V.C. Subsequent
rules were obtained similarly by noting which symbolic
elements were generallvinerror. Table Il summarizes
the confidence for each rule for each object class. The
confidence is obtained as detailed in Sec. V.C and it is
seen to decrease for suhsequent rules. This is expect-
ed since, with fewer symbols used in subsequent rules,
we expect lower confidences in the class estimates
produced. The rules were then applied to the training
sel images, and 1009 carrect results were obtained
{(with confidence 1.0} as expected (see Table II1}). This
contirmed the proper synthesis of the symbolic filters.

The svstem was then tested with five images per
class (only one of these images per class was a training
image, the 0° view) with partitions 7 and 10 (see Fig. 1)
of each image removed 1o simulate data occlusion and
to test the system’s performance. Table IV shows the
results. The first three columns in Table IV give the
test number, the aspect view, and the tvpe of object.
The last three columns show the results obtained: the
class estimate, the rule number which the object first
passed, and the confidence of the rule (and hence the
confidence of the class estimate). As seen, one error
was obtained (for the class estimate in test 4). The
canfidence of this estimate is low (62%) and thus would
be suspect. The remaining objects are correctly classi-
fied with a confidence of at least 69%.

The error case in Table IV would be sensed by its low
confidence and thus the sssociative memory would be
used. For this case, the three distorted output vectors
v, V.., and v, computed for this image were fed to an
autoacanciative processor whose memaory contained
the ideal vector patterns. The output obtained from
the associative processor for each v input is a linear
combination of the ideal stored vectors. This output
was thresholded at (.5 to obtain three new output
vectors. Our rule-based svstem was then again ap-
plied to these new vectors. The resulting decision in
this case was correct (i.e., the image in test 4 was now
identified as a tank) using rule 3 with a confidence of

15 November 1987 / Vol 26. No 22 / APPLIED OPTICS 4801

——



e e

' ag

Tadle . Results of Tests Using the Twelve Training Set Tank and APC

Images
Aspect
Text View Actual Class Rule
number tdeg class estimate number  Confidence
{ Q Tank Tank 1 1o
2 B0 Tank Tunk 1 1.t
N 120 Tank Tank 1 1
4 180 Tank Tank 1 to
S 240 Tank Tank 1 1.0
6 RIT] Tank Tank ] 1
7 0 APC APC 1 1.0
S B APC APC 1 1.0
Y 120 APC APC 1 1.0
10 180 APC ApPC 1 1o
11 240 APC APC 1 to
12 R3] ApC APC 1 1o

Table IV. Results of Tests Using Five Tank and Five APC Test Set images
with Two of the Sixteen Partitions of Each image Omitted (by Occlusion}

Aspedt
Text View Actual Class Rute
nimher e class estimate  number  Confidence
1 0 Tank Tank 1 1.0
N 20 Tank Tank 1 0.7y
3 A0 Tank Tank 1 (0.7
1 “o Tank APC 1 0.R2
3 1o Tank Tuanx i [
t [C APC AP t 1o
N N AP AbPC ! 0.649
S S AbC AbPC 1 [
u e AP APC ] (654
1 110 AP APC i 0By

0.76. Examining the input and output vectors from
the associative memory, we found that thirteen sym-
bols were in error prior to associative processing, and
that the number of symbol errors was reduced to nine
bv the associative processor. In this case, none of the
svmbols that were originally correct was found to be in
error after associative processing.

We have thus seen an example when an associative
processor can be used to correct errors in the output
vectorsv,. Thisoccurs because the associative proces-
sor effectively utilizes all available information to
make an optimal mathematical guess. Unlike an asso-
ciative processor, the proposed rule-based processor
only examines the most reliable symnbols, and hence
ignores some information at each rule. The flexibthty
of the rule-based processor is in its ability to provide a
logical decision (along with a confidence measure)
even when the input information s incomplete. This
was successfully demonstrated in our initial tests in
Table IV. We expect that the use of autoassociative
memories in a rule-based symbolic processor will im-
prove performance of the system in most cases (as long
as the number of errors is modest, the number of
classes is not excessive, and the dimensionality of the
symbolic * cctors is sufficiently large).

4802 APPLIED OPTICS / Vol 26 No 22 / 15 November 1987

Vil.  Conclusion

In this paper, we have outlined a svstem capable of
recognizing targets even when parts of the object are
not visible. Motivation was provided for filtering by
parts and an example was given to illustrate the possi-
ble advantages of synthesizing symbolic correlation
filters formed from subimages of objects. A systemn
was devised and simulated for demonstration pur-
poses. Initial simulation results were encouraging and
demonstrated 3-D distorted object recognition with
occluded object parts. We also showed that an asso-
ciative processor can be used in conjunction with the
rule-based system to improve performance. We de-
tailed how the system’s rules are developed via off-line
interactions between the programmer and the comput-
er. The use of symbolic substitution for error compen-
sation was also suggested.

Further tests with this concept and its various as-
pects are required. This requires devising more ro-
Last rules. It alsoincludes further use of the ability of
the system to predict errors and compensate for them
using multiple filter banks. The use of abductive rea-
soning for developing the programs necessary for this
appears quite attractive. Efficient methods of updat-
ing the correlation filters on-line (involving the addi-
tion or removal of training images) and the memory
storage requirements of such a svstem are other topics
for future investigations.

We acknowledge the support of different aspects of
this work by various contractors (General Dyvnamics
Valley Svstems Division, the Defense Advanced Re-
search Projects Agency, and the Air Force Office of
Scientific Research).
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12. PUBLICATIONS, PRESENTATIONS AND
THESES PRODUCED

Publications from the start of this grant are listed in Section 12.1. Papers published
previously are noted in Section 12.1.1. Papers published during the most recent year (1987) of
this grant are listed in Section 12.1.2. Books and book chapters published are noted in Section
12.1.3. Presentations given during the duration of this grants are noted in Section 12.2. Theses
that were supported by this AFOSR rescarch are noted in Section 12.3. The wealth of
documentation provided under this AFOSR grant is quite phenomenal. This includes over 90

papers and over 100 presentations in diverse journals and communities.
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1984-DECEMBER 1986)

1. D. Casasent and R.L. Cheatham, "Hierarchical Pattern Recognition Using Paralle!
Feature Extraction®, Proc. ASME, Computers in Engineering 1984, Vol. 1, pp. 1-6,
August 1984,

2 D. Casasent, A. Ghosh and C.P. Neuman, “"lterative Solutions to Nonlinear Matrix
Equations Using a Fixed Number of Steps", Proc. SPIE, Vol. 495 pp. 102-108.
August 1984,

3. R.LL. Cheatham and D. Casasent, "Hierarchical Fisher and Moment-Based Pattern
Recognition", Proc. SPIE, Vol. 504, pp. 19-26, August 1981,

4. W.T. Chang. D. Casasent and D. Fetterly, "SDF Control of Correlation Plane
Structure for 3-D Object Representation and Recognition”, Proc. SPIL. Vol. 507. pp.
9-18. August 1981,

5. D. Casasent, A. Goutzoulis and B.V.K. Vijava Kumar, "Time-Integrating Acousto-
Optic Correlator: Error Source Modeling®, Applied Oplics, Vol. 23, pp. 3230-3237,
September 1984,

6. D. Casasent and R.L. Cheatham, "Image Segmentation and Real-Image Tests for an
Optical Moment-Based Feature Extractor®, Optics Communications, Vol. 51, pp.
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Performance®, Optical Engineering, Vol. 23, pp. 716-720, November 1984,
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November 1984.

A. Goutzoulis, D. Casasent and B.V.K. Vijaya Kumar, "Acousto-Optic Processor for
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D. Casasent and J.Z. Song, "A Computer Generated Hologram for Diffraction-
Pattern Sampling", Proc. SPIE. Vol. 523, January 1985,

. D. Casasent, "Hybrid Optical ‘Digital Image Pattern Recognition: A Review", Proc.
SPIE. Vol. 528, pp. 64-82, January 1985.

D. Casasent, "Computer Generated Holograms in Pattern Recognition: A Review",
Proc. SPIE, Vol. 532, pp. 106-11%8, January 1985,

D. Casasent, "Parallel Coherent Optical Processor Architectures and Algorithms for
ATR", Proc. of the Workshop on Algorithm-Guided Parallel Architectures for
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D Casasent, "Frequency-Multiplexed  Acousto-Optic  Architectures  and
Applications", Applied Optics, Vol. 24, March 1985,
D. Casasent. "Fabrication and Testing of a Space and Frequency-Multiplexed Optical

Linear Algebra Processor®, OSA Topical Meeting on Optical Computing, pp. TuD7-1
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OSA Topical Meeting on Machine Vision, pp. ThD4-1 - ThD1-4. March 1985.
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. D. Casasent, *Computer Generated Holograms in Pattern Recognition: A Review",
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.B.V.K. Vijaya Kumar and C. Carroll, "Loss of optimality in cross-correlators",
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based detection methods", Optical Engineering. Vol. 23, pp. 732-37, 1984,
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the cross Wigner distribution function", Applied Optics, Vol. 23, pp. 4090-94, 1984,

-B.V.K. Vijaya Kumar, "Effect of signal bandwidth on the accuracy of signal
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B.V.K. Vijaya Kumar, "Optimality of projection synthetic discriminant functions",
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2.BV.K. Vijaya Kumar, CP. Neuman and K. De¢Vos, "Wigner distribution
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. Washingten, D.C., *Synthetic Discriminant Function Case Studies".

. Washington, D.C., "Basic Optical Signal Processing Architectures and Algorithms".

. Washington, D.C., “Advanced Optical Signal Processing Architectures and
Al7orithms".

10. Weashington, D.C.,  “Optical Linear Algebra Processor Algorithms and

Architectures”.

© W -1 d®




AFOSR-814-0293. Annual Report P.o12w

11. Washington, D.C., "Optical Linear Algebra Processor Applications and High-
Accuracy Architectures”.

12. Carnegie-Mellon University, ECE Sophomore Seminar - Pittsburgh, Pennsylvania,
"Research in the Center for Excellence in Optical Data Processing".

13. University of Pittsburgh, Center for Multivariate Analysis - Pittsburgh, PA,
v Advanced Multi-Class Distortion-Invariant Pattern Recognition™.

14. Wright Patterson Air Force Base - Ohio, "Multi-Functional Optical Signal Processor
for Electronic Warfare".

15. George Mason University - Washington, D.C., *Optical Information Processing".

16. SPIE (IOCC) Conference - Boston, Massachusetts, “Optimal Linear Discriminant
Functions*.

November 1984
17. SPIE Robotics Conference - Boston, MA, "Chord Distributions in Pattern

Recognition*.

18. University of Maryland - "Optical Processing for Autonomous Land Vehicle
Navigation".

January 1985

19. Fairchild Weston - Long Island, NY, "Optical Pattern Recognition and Optical
Processing".

20. SPIE Conference - Los Angeles, CA, "Hybrid Optical, Digital Image Pattern
Recognition: A Review".

21. SPIE Conference - Los Angeles, CA, "A Computer Generated Hologram for
Diffraction-Pattern Sampling".

22. SPIE Conference - Los Angeles, CA "A Recent Review of Hclography in Coherent
Optical Pattern Recognition*.

23. Sandia National Laboratories - Albuquerque, NN, "Optical Pattern Recognition and
Optical Processing".

February 1985
24. NASA Lewis - Cleveland, OH, "Optical Linear Algebra Processors (Systolic)".
March 1985
. George Washington University, - Washington, D.C., "Optical Linear Algebra for
SDI».
. Lockheed Missiles & Space Co. - Sunnyvale, CA, "Advanced Hybrid Optical/Digital
Pattern Recognition®

27. OSA Topical Meeting on Optical Computing - Lake Tahoe, NV, *Falrication and
Testing of a Space and Frequency-Multiplexed Optical Linear Algebra Processor".

28. OSA Topical Meeting on Machine Vision -~ Lake Tahoe, NV, *Ilicrarchical Feature-
Based Object Identification®.

29. OSA Topical Meeting on Machine Vision - Lake Tahoe, N , “Correlation Filters for
Distortion-Invariance and Discrimination".

30. Texas Instruments - Dallas, TX, "Optical Pattern Recognition".

April 1985
31. Electro-Com Automation, Inc. - Dallas, TX, "Optical Pattern Recognition®.
32. Eglin Air Force Base - Ft. Walton Beach, FL, "Optical Pattern Recognition and
Kalman Filtering".
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33.

34.

35.

36.
37.

38.

39.
40.

41.

42.

43.
44.

45.
46.

47.
48.

49.

50.

S ﬁr s —— —

May 1985

Carnegie-Mellon University - Board of Trustees, "Optical Data Processing*.
August 1985
SPIE - San Diego, CA, "Correlation Synthetic Discriminant Functions for Object
Recognition and Classification in High Clutter".
SPIE - San Diego, CA, "A Factorized Extended Kalman Filter".
September 1985

SPIE - Cambridge, MA. "Parameter Estimation and In-Plane Distortion Invariant

Chord Processing".
SPIE - Cambridge, MA, "Optical Processing Techniques for Advanced Intelligent
Robots and Computer Vision*".
SPIE - Cambridge, MA, "High-Dimensionality Feature-Space Processing with
Computer Generated Holograms".

October 1985
SDI - Washington, D.C., "Optical Data Processing for SDI*.
Martin Marietta - Denver, CO. "Optical Data Processing".

November 1985

IEEE Computer Society, Workshop on Computer Architectures for Pattern Analysis
and Image Database Management - Miami Beach, FL, "Optical Computer
Architectures for Pattern Analysis".

January 1986
SPIE Engineering Update Series, "Fourier Optics for Electrical Engineers" - Los
Angeles, CA.
SPIE Engineering Update £ ries, "Optical Data Processing", Los Angeles, CA.
SPIE Conference - Los Angeles, CA, "A Feature Space Rule-Based Optical Relational
Graph Processor".
SPIE  Conference - Los Angeles. CA, "Optical Linear Algebra Processors:
Architectures and Algorithms".
SPIE Conference - Los Angeles. CA, "Optical Al Symbolic Correlators: Architecture
and Filter Considerations®.
Optical Society of America - Los Angeles, CA, "Optical Computing".
Corporate Advisory Group on Optical Information Processing - Los Angeles, CA,
*Optical Computing".
Jet Propulsion Laboratory/NASA - Pasadena, CA. *Optical Linear Algebra and
Pattern Recognition Processors".

February 1986

Computer Science Department, Carnegie-Mellon University - Pittsburgh, PA.
"Optical Al Pattern Recognition Research in ECE".

March 1988 .
- Carnegie-Mellon  University, Professional Education Program - Pittsburgh,

Pennsylvania, "Optical Data Processing".

- Air Force Institute Conference of Technology - Dayton, Ohio, "Optical Data

Processing at Carnegie-Mellon University ",

. Mars Electronics - Philadelphia, PA, "Optical Pattern Recognition".
- SPIE Advanced Institute Series on Hybrid and Optical Computers - Leesburg,
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Virginia, “Scene Analysis Research: Optical Pattern Recognition and Artificial
Intelligence".
April 1986
5. SPIE Conference - Orlando, FL, "Model-Based System for On-Line Affine Image

Transformations®.
56. Robotics Institute - Carnegie-Mellon University - Pittsburgh, PA, “Optical Al
Pattern Recognition Research in ECE".
May 1986

57. IBM, Federal Systems Division - Manassas, VA, "Optical Computing".

58. General Electric - Philadelphia, PA, "Adaptive Optical Processing".

59. Litton Data Systems - Van Nuys, CA, "Multiple Degree of Freedom Pattern
Recognition".

60. Rockwell Corporation - Seal Beach. CA, "Optical Signal Processing”.

61. NASA Jet Propulsion Laboratory, California Institute of Technology - Pasadena, CA,
*Multiple Degree of Freedom Optical Pattern Recognition".

62. SPIE Engineering Update Series, "Fourier Optics and Components for Electrical
Engineers” - Los Angeles, CA.

63. Philip Morris Corporation - Richmond, VA, "Applicaticns of Optiza' Data Processing
to Automated Inspection®.

[d4]
[#4]

June 1986

64. Carnegie-Mellon University, Professional Education Program - Pittsburgh, PA,
“Optical Pattern Recognition®,

65. Carnegie-Mellon University, Professional Education Program - Pittsburgh. PA,
"Optical Signal Processing".

66. SPTE Engineering Update Series, "Fourier Optics and Components for Electrical
Engineers" - Tufts University, Boston. MA. Boston, MA - "Operations Achievable,

67. University of Pretoria - Pretoria, South Africa, "Optical Data Processing".

July 1956
68. IOCC Conference - Jerusalem. Israel, "Optical Artificial Intelligence Processors* .
August 1986
69. SPIE Conference - San Diego, CA. "Distortion-Invariant Associative Processors".
September 1986

70. ALCOA - Pittsburgh, PA, “Optical Information Processing".

1. General Electric - Philadelphia, PA. "Optical Processing".

72. Eikonix Corp. - Boston, MA, "Optical Pattern Recognition for Optical Character
Recognition".

73. Penn State University - State College, PA, "Optical Scene Analvsis and Artificial
Intelligence*.

October 1986

74. Advanced Technology Intl. - Boston, MA, "Optical Information Processing".

75. Advanced Technology Intl. - Orlando, FL. "Optical Information Processing".

76. Advanced Technology Intl. - Washington. D.C., "Optical Information Processing".

77. Carnegie-Mellon University, Professional Education Program (presented to IBM) -
Pittsburgh, Pennsylvania, *Optical Pattern Recognition".

78 Carnegie-Mellon University. Professional Education Program (presented to IBA) -
Pittsburgh, Pennsylvania, "Optical Data Processing".




AFOSR-81-0293, Annual Report

79.

80.

81.

l )

SPIE Conference - Boston, MA, "lierarchical Processor and Matched Filters for
Range Image Processing".
SPIE Conference - Boston, MA, "Large Class Iconic Pattern Recognition: An OCR
Case Study".
Carnegie Mellon University, ECE Graduate Seminar - Pittsburgh, PA, *Optical
Computing in ECE: 1986".

November 1986

_ICALEO’86 - Arlington, VA, "Advanced Optical Pattern Recognition and Artificial
Intelligence®.
. Optical Society of America (San Diego Chapter) - San Diego, CA, "Optical
Computing".

December 1986

. Philip Morris - Rickmond. VA, "Optical Pattern Recognition for Inspection and

Robotics".

5. ORD - Washington, D.C., "Optical Computing Accomplishments".

January 1987

. SPIE Conference - Los Angeles, CA. *A Directed Graph Optical Processor™.
. SPIE Conference - Los Angeles, CA, *Complex Data Handling in Analog and High-

Accuracy Optical Linear Algebra Processors”.

SPIE Conference - Los Angeles. CA, "Parameter Selection for Ieonic and Symbolic

Pattern Recognition Filters”.

. SPIE Conference - Los Angeles. CA. "1-D Acousto Optic Processing of 2-D Image

Data™.

. SPIE Conference - Los Angeles. CA. "Optical Pattern Recognition and Artificial

Intelligence: A Review" (Invited Keynote Speaker).

. SPIE Conference - Los Angeles. CA, "Optical Pattern Recognition and Al Algorithn.s

and Architectures for ATR and Computer Vision" {Invited).

92. SPIE Conference - Los Angeles. CA, "Electro Optic Target Detection and Object
Recognition" (Invited).

93. Workshop on Space Telerobotics - NASA JPL. Pasadena. CA. "AMultiple Degree of
Freedom Optical Pattern Recognition”,

94 Hewlett Packard - Palo Alto. CA. "Optical Computing".

February 1987

95. ISC Defense Systems, Inc. - Lancaster, PA, "Optical Computing and Signal
Processing".

96. DARPA - Washington, D.C., "Optical Computing: A Review"

March 1987

97. Advanced Technology Intl., Short Course - Los Angeles, CA, "Oputical Information
Processing".

9% Advanced Technology Intl.. Short Course - San Diego. CA. "Optical Information

100.

101.

Processing".

- Advanced Technology Intl., Short Course - Anaheim. CA. "Optical Information

Processing"

Advanced Technology Intl.. Short Course - Pulo Alto. CA, "Optical Information
Processing".
Aerospace Corporation - Los Angeles, CA. "Optical Computing and  Signal

Processing Research at CN U™,
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102.

103.

104

105.

106.
107.

109.
110.

111.

112.

113.

115,

116.

117,

118.

120.

OSA Topical Meeting on Optical Computing - Lake Tulioe, NV, "Rule-Bused,
Probabilistic, Symbolic Turget Classification by Object Segmentation®.

May 1987

NASA Langley Research Center - Hampton, VA, "Machine Vision*.
June 1987

Perkin-Elmer - White Plains, NY, "Optical Computing".
July 1987

Carnegie Mellon University - ECE Department, Presentation to the attendees of the
Fault Tolerant Computing Conference, Pittsburgh, PA.

Auguzt 1987
UCLA Extension Course - Los Angeles, CA, "Optical Computing".
Mathematical Modeling Conference - St. Louis, MO, "Computations with Optical
Computers".

CTRW - Los Angeles. CA, "Optical Data Processing of Syvnthetic Aperture Radar

Signals for Pattern Recognition™.
Galileo - Sturbridge. MA. "Product Opportunitics in Optical Data Processing®.
General Electric - Valley Forge. PA. "Recent Progress in Adaptive Optical Data
>rocessing .

September 1987
Defense Science DBoard. Pentagon - Washington, D.C. "Optical Computing for
Automatic Target Recognition".

October 1987

AIAA Computers in Aerospace VI Conference - Boston, MA. "Multi-Tunctional
Optical Logic. Numerical and Pattern Recognition Processor®.
Philip Morris Corporation - Richmond. VA, "Optical Processing for Product
Inspection™.

November 1987

. SPIE  Roboties  Conference - Boston. MA. "Associative Memory  Synthesis,

Performance. Storage Capacity  and  Updating: New Heteroassociative Nemory
Results".

SPIE Roboties Conference - Boston, MAL "Rule-Bused String Code Processor®.

SPIE Robotics Conference - Boston. MA. “Model-Based Satellite Acquisition and
Tracking™.

SPIE Robotics Canference - Boston, MA. "Optical Processor for Product Inspecion™.
SPIE Robotics Conference - Boston, MA, "Optical Feature Extraction for High-Speed
Inspection".

. SPIE Roboties Conference - Boston, MAL *Nulti-Sensor Processing: Object Detection

and Identification®
December 1987

National Security Agency - Maryland, "Optical Information Processing®.
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12.3 THESES SUPPORTED BY AFOSR FUNDING

to

6.

10.

(SEPTEMBER 1984-DATE)

. Eugene Pochapsky, M3 Dissertation, "The Simulation of Optical Puttern

Recognition Systems*”, September 1984,

William Rozzi, 3.8 Dissertation, "Advanced Quantitative Synthetic Discriminant
Function Tests on Ship Imagery", December 1981,

James Fisher, M.S. Dissertation, "Extended Kkalman Filter Algorithms for
Implementation on a High-Accuracy Optical Processor", December 1954,

-W.T. Chang, Ph.D. Dissertation, "Chord Distributions and Correlation SDFs in

Pattern Recognition®, March 1985,

Andrew J. Lee. M.S. Dissertation. "High-Dimensionality Feature Space Pattern
Recogmtion Using Computer Generated Holograms™, January 19586,

Abhipit Mahalanobis, MOS0 Dissertation, " Application of Synthetic Discriminant
Fanctions for Optical Churacoor Recognition™, September 1985,

-Jeltrey Richards, M.S. Dissertation, "Optical Processing for Product Inspection®,

November 19%6.

. Brian Telfer. M.S. Dissertation., "Opticel Associative Memories for Distortion-

Invariant Pattern Recognition™. February 1087,

- Abhijit Muhalanobis, Ph.D. Dissertation. "New Correlation ilters far Symbolic

Rule-Based Pattern Recognition™, August 1987

Rughnram Krisknapuram, PhD Dissertation. "Hough Spuace Associative Processos
for Pattern Recognition™, August 1987,













